Empowering human resource management through artificial intelligence: A systematic literature review and bibliometric analysis

Adil Benabou

https://orcid.org/0000-0002-4046-9335

Morocco

Université Sultan Moulay Slimane image/svg+xml

Multidisciplinary Research Laboratory in Economics and Management, Faculty of Economics and Management.

Fatima Touhami

https://orcid.org/0000-0003-2190-639X

Morocco

Université Sultan Moulay Slimane image/svg+xml

Multidisciplinary Research Laboratory in Economics and Management, Faculty of Economics and Management

|

Accepted: 2024-09-29

|

Published: 2025-01-31

DOI: https://doi.org/10.4995/ijpme.2025.21900
Funding Data

Downloads

Keywords:

Artificial Intelligence, Human Resource Management, Human-AI Collaboration, Machine Learning, Deep Learning, AI-powered chatbots

Supporting agencies:

This research was not funded

Abstract:

Drawing on a systematic literature review and bibliometric analysis, this article examines the burgeoning field of Artificial Intelligence (AI) integration into Human Resource Management (HRM) practises. By evaluating 77 selected articles from two extensive databases, Scopus and Web of Science, this study illuminates the dynamic intersection of AI technologies and HRM, encapsulating the profound implications for organisational and individual aspects of HR practises. This analysis delineates three primary thematic areas: AI's transformative role in HRM, the emerging paradigm of human-AI collaboration, and the nuanced challenges and opportunities presented by AI in HR practises. This research contributes to the academic discourse by mapping the current state of AI applications in HRM, identifying gaps and proposing directions for future research, emphasising the need for ethical frameworks and the strategic integration of AI to enhance HR practises. Through this scholarly endeavour, we aim to offer a comprehensive overview that aids practitioners and researchers in navigating the complexities of AI's role in reshaping HRM towards more efficient, ethical, and innovative practises.

Show more Show less

References:

Abdeldayem, M. M., & Aldulaimi, S. H. (2020). Trends And Opportunities Of Artificial Intelligence In Human Resource Management: Aspirations For Public Sector In Bahrain. International Journal Of Scientific & Technology Research, 9(2).

Abraham, M., Niessen, C., Schnabel, C., Lorek, K., Grimm, V., Möslein, K., & Wrede, M. (2019). Electronic monitoring at work: The role of attitudes, functions, and perceived control for the acceptance of tracking technologies. Human Resource Management Journal, 29(4), 657-675. https://doi.org/10.1111/1748-8583.12250

Adiazmil, A., Hidayat, M., & Basuil, D. A. (2024). Strategic Human Resource Planning in the Era of Digital Transformation. Management Studies and Business Journal (PRODUCTIVITY), 1(1), 130-137. https://doi.org/10.62207/q7158p72

Akter, S., McCarthy, G., & Sajib, S. (2021). Algorithmic bias in data-driven innovation in the age of AI . International Journal of Information Management, 60. https://doi.org/10.1016/j.ijinfomgt.2021.102387

Ancarani, A., Mauro, C. D., & Mascali, F. (2019). Backshoring strategy and the adoption of Industry 4.0: Evidence from Europe. Journal of World Business, 54(4), 360-371. https://doi.org/10.1016/j.jwb.2019.04.003

Andrieux, P., Johnson, R. D., Sarabadani, J., & Slyke, C. V. (2024). Ethical considerations of generative AI-enabled human resource management. Organizational Dynamics, 53 (1). https://doi.org/10.1016/j.orgdyn.2024.101032

Balcioğlu, Y. S., & Artar, M. (2024). Artificial intelligence in employee recruitment. Global Business and Organizational Excellence, 43(5), 56-66. https://doi.org/10.1002/joe.22248

Bankins, S. (2021). The ethical use of artifcial intelligence in human resource management: a decision making framework. Ethics and Information Technology, 23, 841-854. https://doi.org/10.1007/s10676-021-09619-6

Bano, S., Aijaz, U., & Shadab, H. (2022). Artificial Intelligence (Ai) For Talent Acquisition (Ta) In The Manufacturing Sector Of Pakistan. Journal of Namibian Studies, 32, 382-415. https://doi.org/10.59670/jns.v32i.5288

Batra, S. (2023). Artificial Intelligence (AI) Tools in Talent Acquisition and Its Impact on Hr Effectiveness. European Economic Letters, 13(4). Récupéré sur https://www.eelet.org.uk/index.php/journal/article/view/584

Berhil, S., Benlahmar, H., & Laban, N. (2020). A review paper on artificial intelligence at the service of human resources management. Indonesian Journal of Electrical Engineering and Computer Science, 18(1), 32-40. https://doi.org/10.11591/ijeecs.v18.i1.pp32-40

Bhardwaj, G., Singh, S. V., & Kumar, V. (2020). An Empirical Study of Artificial Intelligence and its Impact on Human Resource Functions;. International Conference on Computation, Automation and Knowledge Management. https://doi.org/10.1109/ICCAKM46823.2020.9051544

Bhave, D. P., Teo, L. H., & Dalal, R. S. (2019). Privacy at Work: A Review and a Research Agenda for a Contested Terrain. Journal of Management, 46(1). https://doi.org/10.1177/0149206319878254

Böhm, S., Linnyk, O., Jäger, W., & Teetz, I. (2024). AI in Recruiting: Potentials, Status Quo, and Pilot Projects in Germany. Artificial intelligence in application , 37-157. https://doi.org/10.1007/978-3-658-43843-2_9

Cano-Kollmann, M., T.J.Hannigan, & Mudambi, R. (2018). Global Innovation Networks - Organizations and People. Journal of International Management, 24(2), 87-92. Retrieved from https://doi.org/10.1016/j.intman.2017.09.008

Cao, C., & Zhang, Z. (2022). Machine Learning-Assisted Competency Modeling for Human Resource Management Jobs. Mobile Information Systems. https://doi.org/10.1155/2022/8380307

Chen, Z. (2022). Artificial intelligence-virtual trainer: innovative didactics aimed at personalized training needs. Journal of the Knowledge Economy, 14, 2007-2025. https://doi.org/10.1007/s13132-022-00985-0

Chen, Z. (2023a). Artificial Intelligence Virtual Trainer: Innovative Didactics Aimed at Personalized Training Needs. Journal of the Knowledge Economy, 14, 2007-2025. https://doi.org/10.1007/s13132-022-00985-0

Chen, Z. (2023b). Collaboration among recruiters and artifcial intelligence: removing human prejudices in employment. Cognition, Technology & Work, 25, 135-149. https://doi.org/10.1007/s10111-022-00716-0

Cheng, M. M., & Hackett, R. D. (2021). A critical review of algorithms in HRM: Definition, theory, and practice. Human Resource Management Review, 31(1). https://doi.org/10.1016/j.hrmr.2019.100698

Cho, W., Choi, S., & Choi, H. (2023). Human Resources Analytics for Public Personnel Management: Concepts, Cases, and Caveats. Administrative Sciences, 13(2). https://doi.org/10.3390/admsci13020041

Chowdhury, S., Budhwar, P., Dey, P. K., Joel-Edgar, S., & Abadie, A. (2022). AI-employee collaboration and business performance: Integrating knowledge-based view, socio-technical systems and organisational socialisation framework. Journal of Business Research, 144, 31-49. Récupéré sur https://doi.org/10.1016/j.jbusres.2022.01.069

Chowdhury, S., Dey, P., Joel-Edgar, S., Bhattacharya, S., Rodriguez-Espindola, O., Abadie, A., & Truong, L. (2023). Unlocking the value of artificial intelligence in human resource management through AI capability framework. Human Resource Management Review, 33. Récupéré sur https://doi.org/10.1016/j.hrmr.2022.100899

Cooke, F. L., Liu, M., Liu, L. A., & Chen, C. C. (2019). Human resource management and industrial relations in multinational corporations in and from China: Challenges and new insights. Human Resource Management Journal, 58(6), 455-471. https://doi.org/10.1002/hrm.21986

Coley, C. W., Thomas III, D. A., Lummiss, J. A., Jaworski, J. N., Breen, C. P., Schultz, V., ... & Jensen, K. F. (2019). A robotic platform for flow synthesis of organic compounds informed by AI planning. Science, 365(6453). https://doi.org/10.1126/science.aax1566

Crossan, M. M., & Apaydin, M. (2010). A Multi-Dimensional Framework of Organizational Innovation: A Systematic Review of the Literature. Journal of Management Studies, 1154-1191. Récupéré sur https://doi.org/10.1111/j.1467-6486.2009.00880.x

Danylevych, N., Rudakova, S., Shchetinina, L., & Poplavska, O. (2021). Digitalization of Personnel Management Processes: Reserves for Using Chatbots. International Scientific Symposium «Intelligent Solutions» , 166-176.

Deepa, R., Sekar, S., Malik, A., Kumar, J., & Attri, R. (2024). Impact of AI-focussed technologies on social and technical competencies for HR managers - A systematic review and research agenda. Technological Forecasting & Social Change, 202. https://doi.org/10.1016/j.techfore.2024.123301

Dhanpat, N., Buthelezi, Z. P., Joe, M. R., Maphela, T. V., & Shongwe, N. (2020). Industry 4.0 : the role of human resource professionals. SA Journal of Human Resource Management, 18(1). Récupéré sur https://doi.org/10.4102/sajhrm.v18i0.1302

E.Makarius, E., Mukherjee, D., D.Fox, J., & K.Fox, A. (2020). Rising with the machines: A sociotechnical framework for bringing artificial intelligence into the organization. Journal of Business Research, 120, 262-273. Récupéré sur https://doi.org/10.1016/j.jbusres.2020.07.045

Faqihi, A., & Miah, S. J. (2023). Artificial Intelligence-Driven Talent Management System: Exploring the Risks and Options for Constructing a Theoretical Foundation. Journal of Risk and Financial Management, 16(1). https://doi.org/10.3390/jrfm16010031

França, T. J., Mamede, H. S., & Barroso, J. M. (2023). Artificial intelligence applied to potential assessment and talent identification in an organisational context. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e14694

Garg, S., Sinha, S., Kar, A. K., & Mani, M. (2022). A review of machine learning applications in human resource management. International Journal of Productivity and Performance Management, 71(5), 1590-1610. https://doi.org/10.1108/IJPPM-08-2020-0427

Garg, V., Rani, S., & Matta, H. (2019). Consumer Adoption of Smart Biometric Lock Among SAARC Nations. International Journal ofEnginnering and Advanced, 8(4), 138-144. Récupéré sur https://www.ijeat.org/portfolio-item/d24340484c19/

George, G., & Thomas, M. R. (2019). Integration of Artificial Intelligence in Human Resource. Int. J. of Innovative Technology and Exploring Engineering, 9(2), 5069-5073. https://doi.org/10.35940/ijitee.L3364.129219

Goswami, I., Mittal, A., Kumar, V., Verma, P., & Mer, A. (2023). Analyzing the Role of Total Rewards and Compensation in Increasing Employee Motivation . International Journal of Business Excellence. https://doi.org/10.1504/IJBEX.2023.10058513

Gulliford, F., & Dixon, A. P. (2019). AI: the HR revolution. Strategic HR Review, 18(2), 52-55. Récupéré sur https://doi.org/10.1108/SHR-12-2018-0104

Gupta, A., Chadha, A., Tiwari, V., Varma, A., & Pereira, V. (2023). Sustainable training practices: predicting job satisfaction and employee behavior using machine learning techniques. Asian Business & Management , 22, 1913-1936. https://doi.org/10.1057/s41291-023-00234-5

Haesevoets, T., Cremer, D. D., Dierckx, K., & Hiel, A. V. (2021). Human-machine collaboration in managerial decision making. Computers in Human Behavior, 119. https://doi.org/10.1016/j.chb.2021.106730

Hamilton, R. H., & Davison, H. K. (2021). Legal and Ethical Challenges for HR in Machine Learning. Employee Responsibilities and Rights Journal, 34, 19-39. https://doi.org/10.1007/s10672-021-09377-z

Hamouche, S., Rofa, N., & Parent-Lamarche, A. (2023). Systematic bibliometric review of artificial intelligence in human resource development: insights for HRD researchers, practitioners and policymakers. European Journal of Training and Development. https://doi.org/10.1108/EJTD-10-2023-0152

Hasan, R., Ray, R. K., & Chowdhury, F. R. (2024). Employee Performance Prediction: An Integrated Approach of Business Analytics. Journal of Business and Management Studies, 6(1), 215-219. https://doi.org/10.32996/jbms.2024.6.1.14

Huang, M.-H., Rust, R., & Maksimovic, V. (s.d.). The Feeling Economy: Managing in the Next Generation of Artificial Intelligence (AI). California Management Review, 61(4). https://doi.org/10.1177/0008125619863436

Huang, X., Yang, F., Zheng, J., & Feng, C. (2023). Personalized human resource management via HR analytics and artificial intelligence: Theory and implications. Asia Pacific Management Review, 28(4), 598-610. https://doi.org/10.1016/j.apmrv.2023.04.004

Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577-586. https://doi.org/10.1016/j.bushor.2018.03.007

Jarrahi, M. H., Askay, D., Eshraghi, A., & Smith, P. (2023). Artificial intelligence and knowledge management: A partnership between human and AI. Business Horizons, 66(1), 87-99. https://doi.org/10.1016/j.bushor.2022.03.002

Jia, Q., Gu, Y., & Li, R. (2018). A Conceptual Artificial Intelligence Application Framework in Human Resource Management. ICEB 2018 Proceedings.

Kaushal, N., Kaurav, R. P., Sivathanu, B., & Kaushik, N. (2023). Artificial intelligence and HRM: identifying future research Agenda using systematic literature review and bibliometric analysis. Management Review Quarterly, 73, 455-493. https://doi.org/10.1007/s11301-021-00249-2

Khan, M. R. (2024). Application of Artificial Intelligence for Talent Management: Challenges and Opportunities. Intelligent Human Systems Integration (IHSI 2024): Integrating People and Intelligent Systems, 119. https://doi.org/10.54941/ahfe1004496

Kocka, F. S., FilipLievensb, & Ph.Born, M. (2020). The profile of the 'Good Judge' in HRM: A systematic review and agenda for future research. Human Resource Management Review, 30(2). https://doi.org/10.1016/j.hrmr.2018.09.003

Langer, M., & Konig, C. J. (2023). Introducing a multi-stakeholder perspective on opacity, transparency and strategies to reduce opacity in algorithm-based human resource management. Human Resource Management Review, 31(1). https://doi.org/10.1016/j.hrmr.2021.100881

Lee, M. K. (2018). Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management. Big Data & Society, 5(1), 1-16. https://doi.org/10.1177/2053951718756684

Lee, S. K., Kavya, P., & Lasser, S. C. (2021). Social interactions and relationships with an intelligent virtual agent. International Journal of Human - Computer Studies, 150. https://doi.org/10.1016/j.ijhcs.2021.102608

Lengnick-Hall, a. L., Neely, A. R., & Stone, C. B. (2018). Human Resource Management in the Digital Age: Big Data, HR Analytics and Artificial Intelligence. https://doi.org/10.1201/9781351238922-1

Liang, X., Guo, G., Shu, L., Gong, Q., & Luo, P. (2022). Investigating the double-edged sword effect of AI awareness on employee's service innovative behavior. Tourism Management, 92. https://doi.org/10.1016/j.tourman.2022.104564

Madhani, P. M. (2023). Human Resources Analytics: Leveraging Human Resources for Enhancing Business Performance. Compensation & Benefits Review, 55(1). https://doi.org/10.1177/08863687221131730

Majumder, S., & Mondal, A. (2021). Are chatbots really useful for human resource management? International Journal of Speech Technology, 24, 969-977. Récupéré sur https://doi.org/10.1007/s10772-021-09834-y

Malik, A., Budhwarb, P., Patel, C., & Srikanth, N. R. (2020). May the bots be with you! Delivering HR cost-effectiveness and individualised employee experiences in an MNE. The International Journal of Human Resource Management, 33(6), 1148-1178. https://doi.org/10.1080/09585192.2020.1859582

Malik, i., Tripathi, S. N., Kar, A. K., & Gupta, S. (2021). Impact of artificial intelligence on employees working in industry 4.0 led organizations. International Journal of Manpower, 334-354. Récupéré sur https://doi.org/10.1108/ijm-03-2021-0173

Mariani, M., & Borghi, M. (2019). Industry 4.0: A bibliometric review of its managerial intellectual structure and potential evolution in the service industries. Technological Forecasting and Social Change, 149. https://doi.org/10.1016/j.techfore.2019.119752

Mauro, A. D., Greco, M., Grimaldi, M., & Ritala, P. (2018). Human resources for Big Data professions: A systematic classification of job roles and required skill sets. Information Processing & Management, 54(5), 807-817. Récupéré sur https://doi.org/10.1016/j.ipm.2017.05.004

Mer, A. (2023). Artificial Intelligence in Human Resource Management: Recent Trends and Research Agenda (Vol. 111B). Emerald Publishing Limited. https://doi.org/10.1108/S1569-37592023000111B003

Merlin, R., & Jayam.R. (2018). Artificial Intelligence in Human Resource Management. International Journal of Pure and Applied Mathematics, 119(17 ), 1891-1895.

Mittal, P., Jora, R. B., Sodhi, K. K., & Saxena, P. (2023). A Review of The Role of Artificial Intelligence in Employee Engagement. IEEE. https://doi.org/10.1109/ICACCS57279.2023.10112957

Morshidi, A. B., Satar, N. S., & Azizan, A. A. (2024). A Bibliometric Analysis of Artificial Intelligence and Human Resource Management Studies. IGI Global. https://doi.org/10.4018/979-8-3693-0039-8.ch006

Nawaz, N., Arunachalam, H., Pathi, B. K., & Gajenderan, V. (2024). The adoption of artificial intelligence in human resources management practices. International Journal of Information Management Data Insights, 4(1). https://doi.org/10.1016/j.jjimei.2023.100208

Needleman, I. G. (2003). A guide to systematic reviews. Journal of Clinical Periodontology, 6-9. Récupéré sur https://doi.org/10.1034/j.1600-051X.29.s3.15.x

Palos-Sánchez, P. R., Baena-Luna, P., Badicu, A., & Infante-Moro, J. C. (2022). Artificial Intelligence and Human Resources Management: A Bibliometric Analysis. Applied Artificial Intelligence, 36(1). https://doi.org/10.1080/08839514.2022.2145631

Park, J. J. (2024). Unlocking training transfer in the age of artificial intelligence. Business Horizons. https://doi.org/10.1016/j.bushor.2024.02.002

Passalacquaa, M., Pellerina, R., Yahiab, E., & Magnani, F. (2024). Practice With Less AI Makes Perfect: Partially Automated AI During Training Leads to Better Worker Motivation, Engagement, and Skill Acquisition. International Journal of Human-Computer Interaction, 1-22. https://doi.org/10.1080/10447318.2024.2319914

Pereira, V., Hadjielias, E., Christofi, M., & Vrontis, D. (2023). A systematic literature review on the impact of artificial intelligence on workplace outcomes: A multi-process perspective. Human Resource Management Review, 33(1). https://doi.org/10.1016/j.hrmr.2021.100857

Pillai, R., & Sivathanu, B. (2020). Adoption of artificial intelligence (AI) for talent acquisition in IT/ITeS organizations. Benchmarking: An International Journal, 27(9). https://doi.org/10.1108/BIJ-04-2020-0186

Poggenpohl, S. H. (2020). Waste and Agency in the Digital Era: Who’s in Charge? She Ji: The Journal of Design, Economics, and Innovation, 6(3), 331-344. https://doi.org/10.1016/j.sheji.2020.07.003

Premnath, E., & Chully, A. A. (2019). Artificial Intelligence in Human Resource Management: A Qualitative Study in the Indian Context. Journal of Xi'an University of Architecture & Technology, 11(12), 1193-1205. https://doi.org/20.19001.JAT.2020.XI.I12.20.1864

Qamar, Y., & Samad, T. A. (2020). Human resource analytics: a review and bibliometric analysis. Personnel Review. https://doi.org/10.1108/PR-04-2020-0247

Ramachandran, K., Mary, A. A., Hawladar, S., Asokk, D., Bhaskar, B., & Pitroda, J. (2022). Machine learning and role of artificial intelligence in optimizing work performance and employee behavior. Materials Today: Proceedings, 51(8), 2327-2331. https://doi.org/10.1016/j.matpr.2021.11.544

Rana, T. (2018). The Future of HR in the Presence of AI: A Conceptual Study. SSRN Electronic Journal. Récupéré sur https://doi.org/10.2139/ssrn.3335670

Raza, A., Munir, K., & Almutairi, M. (2022). Predicting Employee Attrition Using Machine Learning Approaches. Applied Sciences, 12(13). https://doi.org/10.3390/app12136424

Rodgers, W., Murray, J. M., Stefanidis, A., Degbey, W. Y., & Tarba, S. Y. (2023). An artificial intelligence algorithmic approach to ethical decision-making in human resource management processes. Human Resource Management Review, 33(1). https://doi.org/10.1016/j.hrmr.2022.100925

Sajjadiani, S., Sojourner, A., Kammeyer-Mueller, J., & Mykerezi, E. (2019). Using machine learning to translate applicant work history into predictors of performance and turnover. Journal of Applied Psychology, 104(10), 1207-1225. Récupéré sur https://doi.org/10.1037/apl0000405

Sakka, F. E. (2022). Human resource management in the era of artificial intelligence: future HR work practices, anticipated skill set, financial and legal implications. Academy of Strategic Management Journal, 21(1), 1-14.

Samarasinghe, K. R., & Medis, A. (2020). Artificial Intelligence based Strategic Human Resource Management (AISHRM) for Industry 4.0. Global Journal of Management and Business Research: G Interdisciplinary, 20(2). https://doi.org/10.34257/GJMBRGVOl20IS2PG7

Sattu, R., Das, S., & Jena, L. K. (2024). Should I adopt AI during talent acquisition? Evidence from HR professionals of Indian IT organisations. Journal of Organizational Effectiveness: People and Performance, 11(1), 1-18. https://doi.org/10.1108/JOEPP-05-2023-0186

Seeber, I., Bittner, E., O.Briggs, R., Vreede, T. d., Vreede, G.-J. d., & Elkins, A. (2020). Machines as teammates: A research agenda on AI in team collaboration. Information & Management, 57(2). Récupéré sur https://doi.org/10.1016/j.im.2019.103174

Shrivastava, S., Nagdev, K., & Rajesh, A. (2018). Redefining HR using people analytics: the case of Google. Human Resource Management International Digest, 26(2). https://doi.org/10.1108/HRMID-06-2017-0112

Singh, A., & Shaurya, A. (2021). Impact of Artificial Intelligence on HR practices in the UAE. Humanities and social sciences communications. Récupéré sur https://doi.org/10.1057/s41599-021-00995-4

Sowa, K., Przegalinska, A., & Ciechanowski, L. (2021). Cobots in knowledge work Human - AI collaboration in managerial professions. Journal of Business Research, 125, 135-142. https://doi.org/10.1016/j.jbusres.2020.11.038

Stefano, V. D. (2019). Negotiating the Algorithm': Automation, Artificial Intelligence and Labour Protection. Comparative Labor Law & Policy Journal, 41(1), 1-32. Récupéré sur http://dx.doi.org/10.2139/ssrn.3178233

Stone, D. L., Lukaszewski, K. M., & Johnson, R. D. (2024). Will artificial intelligence radically change human resource management processes? Organizational Dynamics, 53(1). https://doi.org/10.1016/j.orgdyn.2024.101034

Suen, H.-Y., & Hung, K.-E. (2024). Revealing the influence of AI and its interfaces on job candidates' honest and deceptive impression management in asynchronous video interviews. Technological Forecasting & Social Change, 198. https://doi.org/10.1016/j.techfore.2023.123011

Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial Intelligence in Human Resources Management: Challenges and a Path Forward. California Management Review, 61(4), 15-42. https://doi.org/10.1177/00081256198679

Thakur, R. (2024). Introduction to Artificial Intelligence and Its Importance in Modern Business Management. IGI Global. https://doi.org/10.4018/979-8-3693-1902-4.ch009

Tuffaha, M., & Perello-Marin, M. R. (2021). Artificial intelligence definition, applications and adoption in Human Resource. Int. J. Business Innovation and Research,.Y. https://doi.org/10.1504/IJBIR.2021.10040005

Tweedie, D., Wild, D., Rhodes, C., & Martinov-Bennie, N. (2018). How Does Performance Management Affect Workers? Beyond Human Resource Management and Its Critique. International Journal of Management Reviews, 21(1), 76-96. https://doi.org/10.1111/ijmr.12177

Upadhyay, A. K., & Khandelwal, K. (2018). Applying artificial intelligence: implications for recruitment. Strategic HR Review, 17(5), 255-258. https://doi.org/10.1108/SHR-07-2018-0051

van Esch, P., & Black, S. (2019). Factors that influence new generation candidates to engage with and complete digital, AIenabled recruiting. Business Horizons, 62(6), 729-739. https://doi.org/10.1016/j.bushor.2019.07.004

van Esch, P., & Mente, M. (2018). Marketing video-enabled social media as part of your e-recruitment strategy: Stop trying to be trendy. Journal of Retailing and Consumer Services, 44, 266-273. https://doi.org/10.1016/j.jretconser.2018.06.016

van Esch, P., Black, J. S., & Ferolie, J. (2019). Marketing AI recruitment: The next phase in job application and selection. Computers in Human Behavior, 90, 215-222. Retrieved from https://doi.org/10.1016/j.chb.2018.09.009

Varma, A., Dawkins, C., & Chaudhuri, K. (2022). Artificial intelligence and people management: A critical assessment through the ethical lens. Human Resource Management Review, 33, 1053-4822. https://doi.org/10.1016/j.hrmr.2022.100923

Varma, A., Pereira, V., & Patel, P. (2024). Artificial intelligence and performance management. Organizational Dynamics,

(1). https://doi.org/10.1016/j.orgdyn.2024.101037

Votto, A. M., Valecha, R., Najafirad, P., & Rao, H. R. (2021). Artificial Intelligence in Tactical Human Resource Management: A Systematic Literature Review. International Journal of Information Management Data Insights, 1(2). https://doi.org/10.1016/j.jjimei.2021.100047

Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2021). Artificial intelligence, robotics, advanced technologies and human resource management: a systematic review. The international journal of human resource management, 33(6), 1237-1266. https://doi.org/10.1080/09585192.2020.1871398

Williams, P. (2019). Does competency-based education with blockchain signal a new mission for universities? Journal of Higher Education Policy and Management, 41, 104-117. https://doi.org/10.1080/1360080X.2018.1520491

Wilson, J., & Daugherty, P. R. (2018). Collaborative Intelligence: Humans and AI Are Joining Forces. Harvard Business Review, 96(4), 114-123.

You, S., & Robert, L. P. (2023). Subgroup formation in human-robot teams: A multi-study mixed-method approach with implications for theory and practice. Journal of the Association for Information Science and Technology, 34(3), 323-338. https://doi.org/10.1002/asi.24626

Yuldoshev, N., Tursunov, B., & Qozoqov, S. (2018). Use of artificial intelligence methods in operational planning of textile production. Journal of Process Management and New Technologies, 6(2). https://doi.org/10.5937/jouproman6-17221

Zhai, Y., Zhang, L., & Yu, M. (2024). AI in Human Resource Management: Literature Review and Research Implications. Journal of the Knowledge Economy. https://doi.org/10.1007/s13132-023-01631-z

Show more Show less