Association rule mining algorithm implementation for e-commerce in the retail sector
DOI:
https://doi.org/10.4995/jarte.2024.20753Keywords:
Association rule mining, Incremental data mining, Data mining, Apriori algorithmAbstract
The growth of online trading platforms and the development of market technology have forced businesses to take part in the analysis of client behavior. Therefore, this research aims to analyze customer behavior in the Kyrgyz Republic to enhance supplier's revenue, service quality, and customer satisfaction. This data was analyzed using the apriori algorithm. Results generated 118 rules which revealed strong connections between items and showed up to 61.06% relationship between the consumption of products, suggesting a connection among the considered items. Thus, the association rule highlights the significance of association rule mining in uncovering valuable insights within sales transaction data. These insights can inform targeted marketing efforts, inventory management, and the enhancement of customer experiences and optimize business strategies to meet customer preferences, ultimately fostering growth and competitiveness in the retail sector.
Downloads
References
Aggarwal, C.C., Aggarwal, C.C. (2015). Data classification. Springer International Publishing. pp. 285-344. https://doi.org/10.1007/978-3-319-14142-8_10 DOI: https://doi.org/10.1007/978-3-319-14142-8_10
Agrawal, R., Srikant, R. (1994), September. Fast algorithms for mining association rules. In Proc. 20th Int. Conf. Very Large Data Bases, VLDB. Vol. 1215, pp. 487-499.
Araujo, L., Martinez-Romo, J., Bisbal, O., Sanchez-de-Madariaga, R., The Cohort of the National AIDS Network (CoRIS), Portilla, J., Portilla, I., Merino, E., García, G., Agea, I., Sánchez-Payá, J., Rodríguez, J. C., Giner, L., Reus, S., Boix, V., Torrus, D., Pérez, V., Portilla, J., Gómez, J. L., ... Telleria, P. (2022). Discovering HIV related information by means of association rules and machine learning. Scientific Reports, 12(1), 18208. https://doi.org/10.1038/s41598-022-22695-y DOI: https://doi.org/10.1038/s41598-022-22695-y
Borgelt, C, 2005, August. An Implementation of the FP-growth Algorithm. In Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations (pp. 1-5). https://doi.org/10.1145/1133905.1133907 DOI: https://doi.org/10.1145/1133905.1133907
Chen, Y.L., Tang, K., Shen, R.J., Hu, Y.H., 2005. Market basket analysis in a multiple store environment. Decision support systems, 40(2), 339-354. https://doi.org/10.1016/j.dss.2004.04.009 DOI: https://doi.org/10.1016/j.dss.2004.04.009
Dio, R., Dermawan, A. A., Putera, D. A. (2023). Application of Market Basket Analysis on Beauty Clinic to Increasing Customer's Buying Decision. Sinkron, 8(3), 1348-1356. https://doi.org/10.33395/sinkron.v8i3.12421 DOI: https://doi.org/10.33395/sinkron.v8i3.12421
Fister Jr, I., Fister, I., Fister, D., Podgorelec, V., Salcedo-Sanz, S. (2023). A comprehensive review of visualization methods for association rule mining: Taxonomy, Challenges, Open problems and Future ideas. arXiv preprint arXiv:2302.12594. https://doi.org/10.1016/j.eswa.2023.120901 DOI: https://doi.org/10.1016/j.eswa.2023.120901
Giudici, P. (2005). Applied data mining: statistical methods for business and industry. John Wiley & Sons.
Han, E.H., Karypis, G., Kumar, V. (2000). Scalable parallel data mining for association rules. IEEE Transactions on Knowledge and Data Engineering, 12(3), 337-352. https://doi.org/10.1109/69.846289 DOI: https://doi.org/10.1109/69.846289
Iváncsy, R., Kovács, F., Vajk, I. (2004). An Analysis of Association Rule Mining Algorithms. In CDROM Proc. of Fourth International ICSC Symposium on Engineering of Intelligent Systems (EIS 2004).
Li, K., Liu, L., Wang, F., Wang, T., Duić, N., Shafie-khah, M., Catalão, J.P.S. (2019). Impact factors analysis on the probability characterized effects of time of use demand response tariffs using association rule mining method. Energy Conversion and Management, 197, 111891. https://doi.org/10.1016/j.enconman.2019.111891 DOI: https://doi.org/10.1016/j.enconman.2019.111891
Özçakir, F.C., ÇAMURCU, A.Y. (2007). Birliktelik kuralı yöntemi için bir veri madenciliği yazılımı tasarımı ve uygulaması. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 6(12), pp.21-37.
Rao, A.B., Kiran, J.S., Poornalatha G. (2023). Application of market-basket analysis on healthcare. International Journal of System Assurance Engineering and Management, 14(S4), 924-929. https://doi.org/10.1007/s13198-021-01298-2 DOI: https://doi.org/10.1007/s13198-021-01298-2
Singh, P.K., Othman, E., Ahmed, R., Mahmood, A., Dhahri, H., Choudhury, P. (2021). Optimized recommendations by user profiling using apriori algorithm. Applied Soft Computing, 106, 107272. https://doi.org/10.1016/j.asoc.2021.107272 DOI: https://doi.org/10.1016/j.asoc.2021.107272
Soni, H.K., Sharma, S., Jain, M., 2017, February. Plausible characteristics of association rule mining algorithms for e-commerce. In 2017 Third International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB) (pp. 36-39). IEEE. https://doi.org/10.1109/AEEICB.2017.7972379 DOI: https://doi.org/10.1109/AEEICB.2017.7972379
Vujkovic, M., Keaton, J. M., Lynch, J. A., Miller, D. R., Zhou, J., Tcheandjieu, C., Huffman, J. E., Assimes, T. L., Lorenz, K., Zhu, X., Hilliard, A. T., Judy, R. L., Huang, J., Lee, K. M., Klarin, D., Pyarajan, S., Danesh, J., Melander, O., Rasheed, A., ... Saleheen, D. (2020). Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nature Genetics, 52(7), 680-691. https://doi.org/10.1038/s41588-020-0637-y DOI: https://doi.org/10.1038/s41588-020-0637-y
Zaki, M.J. (2000). Scalable algorithms for association mining. IEEE transactions on knowledge and data engineering, 12(3), 372-390. https://doi.org/10.1109/69.846291 DOI: https://doi.org/10.1109/69.846291
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Rita Ismailova
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Licencse