Optimal Reconfiguration of a Limited Parallel Robot for Forward Singularities Avoidance
DOI:
https://doi.org/10.4995/muse.2020.13352Keywords:
Parallel robot, non-linear optimization, rehabilitation, trajectory, singularityAbstract
The positioning of the anchoring points of a Parallel Kinematic Manipulator has an important impact on its later performance. This paper presents an optimization problem to deal with the reconfiguration of a Parallel Kinematic manipulator with four degrees of freedom and the corresponding algorithms to address such problem, with the subsequent test on an actual robot. The cost function minimizes the forces applied by the actuators along the trajectory and considers singular positions and the feasibility of the active generalized coordinates. Results are compared among different algorithms, including evolutionary, heuristics, multi-strategy and gradient-based optimizers.
Downloads
References
Arakelian, V., Briot, S., & Glazunov, V. (2008). Increase of singularity-free zones in the workspace of parallel manipulators using mechanisms of variable structure. Mechanism and Machine Theory, 43(9), 1129–1140. https://doi.org/10.1016/J.MECHMACHTHEORY.2007.09.005
Araujo-Gómez, P., Díaz-Rodríguez, M., Mata, V., & González-Estrada, O. A. (2019). Kinematic analysis and dimensional optimization of a 2R2T parallel manipulator. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(10), 425. https://doi.org/10.1007/s40430-019-1934-1
Araujo-Gómez, P., Mata, V., Díaz-Rodríguez, M., Valera, A., & Page, A. (2017). Design and kinematic analysis of a novel 3UPS/RPU parallel kinematic mechanism with 2T2R motion for knee diagnosis and rehabilitation tasks. Journal of Mechanisms and Robotics, 9(6), 061004. https://doi.org/10.1115/1.4037800
Beiranvand, V., Hare, W., & Lucet, Y. (2017). Best practices for comparing optimization algorithms. Optimization and Engineering, 18(4), 815–848. https://doi.org/10.1007/s11081-017-9366-1
Dash, A. K., Chen, I. M., Yeo, S. H., & Yang, G. (2005). Workspace generation and planning singularity-free path for parallel manipulators. Mechanism and Machine Theory, 40(7), 776–805. https://doi.org/10.1016/j.mechmachtheory.2005.01.001
Gosselin, C., & Angeles, J. (1990). Singularity Analysis of Closed-Loop Kinematic Chains. IEEE Transactions on Robotics and Automation, 6(3), 281–290. https://doi.org/10.1109/70.56660
Llopis-Albert, C., Rubio, F., & Valero, F. (2018). Optimization approaches for robot trajectory planning. Multidisciplinary Journal for Education, Social and Technological Sciences, 5(1), 1. https://doi.org/10.4995/muse.2018.9867
Patel, Y. D., & George, P. M. (2012). Parallel Manipulators Applications—A Survey. Modern Mechanical Engineering, 02(03), 57–64. https://doi.org/10.4236/mme.2012.23008
Rubio, F., Llopis-Albert, C., Valero, F., & Suñer, J. L. (2016). Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory. Robotics and Autonomous Systems, 86, 106–112. https://doi.org/10.1016/j.robot.2016.09.008
Rubio, F., Valero, F., & Llopis-Albert, C. (2019). A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems, 16(2), 172988141983959. https://doi.org/10.1177/1729881419839596
Tsai, L.-W. (1999). Robot Analysis and Design. John Wiley & Sons, Inc. New York, NY, USA ©1999.
Valero, F., Rubio, F., & Llopis-Albert, C. (2019). Assessment of the Effect of Energy Consumption on Trajectory Improvement for a Car-like Robot. Robotica, 37(11), 1998–2009. https://doi.org/10.1017/S0263574719000407
Vallés, M., Araujo-Gómez, P., Mata, V., Valera, A., Díaz-Rodríguez, M., Page, Á., & Farhat, N. M. (2018). Mechatronic design, experimental setup, and control architecture design of a novel 4 DoF parallel manipulator. Mechanics Based Design of Structures and Machines, 46(4), 425–439. https://doi.org/10.1080/15397734.2017.1355249
Wehage, K. T., Wehage, R. A., & Ravani, B. (2015). Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring. Mechanism and Machine Theory, 92, 464–483. https://doi.org/10.1016/j.mechmachtheory.2015.06.006
www.esteco.com. (n.d.). Retrieved June 10, 2019, from https://www.esteco.com/
Xianwen Kong, B., & Gosselin, C. M. (2002). Kinematics and singularity analysis of a novel type of 3-CRR 3-DOF translational parallel manipulator. International Journal of Robotics Research, 21(9), 791–798. https://doi.org/10.1177/02783649020210090501
Yang, X. (2017). Optimization Algorithms Optimization and Metaheuristic Algorithms in Engineering. (March). https://doi.org/10.1007/978-3-642-20859-1
Downloads
Published
How to Cite
Issue
Section
License
Since 2023 this journal is published under a license
The previous articles keep the license which they were published (license that appears in articles pdf's).