Psychosocial factors related to the increasing automation of work processes: A systematic review
Submitted: 2024-04-02
|Accepted: 2024-09-13
|Published: 2024-10-08
Copyright (c) 2023 Raul Martinez-Balderrama , Marcela Deyanira Rodriguez-Urrea, Juan Pablo García-Vázquez, Ismael Mendoza-Muñoz, Gabriela Jacobo-Galicia

This work is licensed under a Creative Commons Attribution 4.0 International License.
Downloads
Keywords:
Psychosocial Risks, Psychosocial Risk Factors at Work, Work Study, Industry 4.0
Supporting agencies:
Abstract:
Purpose: To identify which psychosocial factors can be related to the increasing automation of work processes, determining practical implications relevant to the evaluation of psychosocial risk factors at work within organizations before the imminent transition towards industry 4.0
Design/methodology/approach: A systematic review of the literature was carried out. The review structure was based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) approach for the studies selection and the Noblit and Hare's meta-ethnographic approach for data analysis and synthesis.
Findings: Thirty-five studies were selected which passed all the selection stages. Six psychosocial risk factors were detected whose behaviors may be influenced by the increasing automation of work. Evidence suggests that the factors of development possibility, change management, mental load, routine content, and job insecurity may increase their exposure due to job modifications owing to new automation technologies. On the other hand, social relationships at work have the ability to positively influence the successful implementation of new automated processes.
Originality/value: The results obtained represent excellent indications of an overview of psychosocial risk factors that may increase their danger due to the increasing automation of work processes and Industry 4.0.
References:
Ansari, F., Hold, P., & Khobreh, M. (2020). A knowledge-based approach for representing jobholder pro-file toward optimal human–machine collaboration in cyber physical production systems. CIRP Journal of Manufacturing Science and Technology, 28, 87–106. https://doi.org/10.1016/j.cirpj.2019.11.005
Ávila, S. F. (2015). Reliability analysis for socio-technical system, case propene pumping. Engineering Failure Analysis, 56, 177–184. https://doi.org/10.1016/j.engfailanal.2015.02.023
Bogataj, D., Battini, D., Calzavara, M., & Persona, A. (2019). The response latency in global production and logistics: A trade-off between robotization and globalization of a chain. Procedia Manufacturing, 39, 1428–1437. https://doi.org/10.1016/j.promfg.2020.01.309
Cimini, C., Lagorio, A., Pirola, F., & Pinto, R. (2019). Exploring human factors in Logistics 4.0: Empirical evidence from a case study. IFAC-PapersOnLine, 52(13), 2183–2188. https://doi.org/10.1016/j.ifacol.2019.11.529
David, B. (2017). Computer technology and probable job destructions in Japan: An evaluation. Journal of the Japanese and International Economies, 43, 77-87. https://doi.org/10.1016/j.jjie.2017.01.001
D’Addona, D. M., Bracco, F., Bettoni, A., Nishino, N., Carpanzano, E., & Bruzzone, A. A. (2018). Adap-tive automation and human factors in manufacturing: An experimental assessment for a cognitive ap-proach. CIRP Annals, 67(1), 455–458. https://doi.org/10.1016/j.cirp.2018.04.123
Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computeri-sation?. Technological forecasting and social change, 114, 254-280. https://doi.org/10.1016/j.techfore.2016.08.019
Gershwin, S. B. (2018). The future of manufacturing systems engineering. International Journal of Pro-duction Research, 56(1–2), 224–237. https://doi.org/10.1080/00207543.2017.1395491
Golightly, D., Sharples, S., Patel, H., & Ratchev, S. (2016). Manufacturing in the cloud: A human factors perspective. International Journal of Industrial Ergonomics, 55, 12–21. https://doi.org/10.1016/j.ergon.2016.05.011
Hogenboom, S., Rokseth, B., Vinnem, J. E., & Utne, I. B. (2018). Human reliability and the impact of control function allocation in the design of dynamic positioning systems. Reliability Engineering and System Safety, 194. https://doi.org/10.1016/j.ress.2018.12.019
Joe, J. C., O’Hara, J., Hugo, J. V., & Oxstrand, J. H. (2015). Function Allocation for Humans and Auto-mation in the Context of Team Dynamics. Procedia Manufacturing, 3(Ahfe), 1225–1232. https://doi.org/10.1016/j.promfg.2015.07.204
Kaczmarek, S. (2019). Mastering fourth industrial revolution through innovative personnel management - A study analysis on how game-based approaches affect competence development. IFAC-PapersOnLine, 52(13), 2332–2337. https://doi.org/10.1016/j.ifacol.2019.11.554
Kadir, B. A., & Broberg, O. (2020). Human well-being and system performance in the transition to indus-try 4.0. International Journal of Industrial Ergonomics, 76(February), 102936. https://doi.org/10.1016/j.ergon.2020.102936
Kadir, B. A., Broberg, O., & da Conceicao, C. S. (2019). Current research and future perspectives on hu-man factors and ergonomics in Industry 4.0. Computers & Industrial Engineering, 137, 106004. https://doi.org/10.1016/j.cie.2019.106004
Kazancoglu, Y., & Ozkan-Ozen, Y. D. (2018). Analyzing Workforce 4.0 in the Fourth Industrial Revolu-tion and proposing a road map from operations management perspective with fuzzy DEMATEL. Journal of Enterprise Information Management, 31(6), 891–907. https://doi.org/10.1108/JEIM-01-2017-0015
Kim, W., Kim, N., Lyons, J. B., & Nam, C. S. (2020). Factors affecting trust in high-vulnerability human-robot interaction contexts: A structural equation modelling approach. Applied Ergonomics, 85(November 2019), 103056. https://doi.org/10.1016/j.apergo.2020.103056
Kopacek, P. (2019). Robo-ethics a survey of developments in the field and their implications for social effects. IFAC-PapersOnLine, 52(25), 131–135. https://doi.org/10.1016/j.ifacol.2019.12.460
Körner, U., Müller-Thur, K., Lunau, T., Dragano, N., Angerer, P., & Buchner, A. (2019). Perceived stress in human–machine interaction in modern manufacturing environments—Results of a qualitative interview study. Stress and Health, 35(2), 187–199. https://doi.org/10.1002/smi.2853
Kurt, R. (2019). Industry 4.0 in terms of industrial relations and its impacts on labour life. Procedia com-puter science, 158, 590-601. https://doi.org/10.1016/j.procs.2019.09.093
Lee, S. M., Kim, M. C., Kim, J. H., & Seong, P. H. (2015). Optimization of automation: II. Estimation method of ostracism rate based on the loss of situation awareness of human operators in nuclear power plants. Annals of Nuclear Energy, 79, 93–100. https://doi.org/10.1016/j.anucene.2015.01.021
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., ... & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that eval-uate health care interventions: explanation and elaboration. Annals of internal medicine, 151(4), W-65. https://doi.org/10.7326/0003-4819-151-4-200908180-00136
Longo, F., Nicoletti, L., & Padovano, A. (2017). Smart operators in industry 4.0: A human-centered ap-proach to enhance operators’ capabilities and competencies within the new smart factory context. Com-puters and Industrial Engineering, 113, 144–159. https://doi.org/10.1016/j.cie.2017.09.016
Longo, F., Nicoletti, L., & Padovano, A. (2019). Emergency preparedness in industrial plants: A forward-looking solution based on industry 4.0 enabling technologies. Computers in Industry, 105, 99–122. https://doi.org/10.1016/j.compind.2018.12.003
Mattsson, S., Fast-Berglund, Å., Li, D., & Thorvald, P. (2018). Forming a cognitive automation strategy for Operator 4.0 in complex assembly. Computers and Industrial Engineering, 139. https://doi.org/10.1016/j.cie.2018.08.011
Micheler, S., Goh, Y. M., & Lohse, N. (2019). Innovation landscape and challenges of smart technologies and systems–a European perspective. Production and Manufacturing Research, 7(1), 503–528. https://doi.org/10.1080/21693277.2019.1687363
Nam, T. (2019). Citizen attitudes about job replacement by robotic automation. Futures, 109(February), 39–49. https://doi.org/10.1016/j.futures.2019.04.005
Noblit, G. W., & Hare, R. D. (1988). Meta-ethnography: Synthesizing qualitative studies (Vol. 11). sage.
Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. Systematic reviews, 5, 1-10. https://doi.org/10.1186/s13643-016-0384-4
Pacaux-Lemoine, M. P., & Trentesaux, D. (2019). ETHICAL RISKS of HUMAN-MACHINE SYMBIO-SIS in INDUSTRY 4.0: INSIGHTS from the HUMAN-MACHINE COOPERATION APPROACH. IFAC-PapersOnLine, 52(19), 19–24. https://doi.org/10.1016/j.ifacol.2019.12.077
Pacaux-Lemoine, M. P., Trentesaux, D., Zambrano Rey, G., & Millot, P. (2017). Designing intelligent manufacturing systems through Human-Machine Cooperation principles: A human-centered approach. Computers and Industrial Engineering, 111, 581–595. https://doi.org/10.1016/j.cie.2017.05.014
Panigrahi, D. (2021). The automation technologies emerging in 2021. Retrieved from https://www.smartindustry.com/articles/2021/the-automation-technologies-emerging-in-2021/#:~:text=Leading technologies such as artificial,for businesses in these industries
Patel, P. C., Devaraj, S., Hicks, M. J., & Wornell, E. J. (2018). County-level job automation risk and health: Evidence from the United States. Social Science and Medicine, 202(December 2017), 54–60. https://doi.org/10.1016/j.socscimed.2018.02.025
Pérez, L., Diez, E., Usamentiaga, R., & García, D. F. (2019). Industrial robot control and operator training using virtual reality interfaces. Computers in Industry, 109, 114–120. https://doi.org/10.1016/j.compind.2019.05.001
Pérez, L., Rodríguez-Jiménez, S., Rodríguez, N., Usamentiaga, R., García, D. F., & Wang, L. (2020). Sym-biotic human–robot collaborative approach for increased productivity and enhanced safety in the aero-space manufacturing industry. International Journal of Advanced Manufacturing Technology, 106(3–4), 851–863. https://doi.org/10.1007/s00170-019-04638-6
Peruzzini, M., & Pellicciari, M. (2017). A framework to design a human-centered adaptive manufacturing system for aging workers. Advanced Engineering Informatics, 33, 330–349. https://doi.org/10.1016/j.aei.2017.02.003
Ramzi, N., Ahmad, H., & Zakaria, N. (2019). A conceptual model on people approach and smart manu-facturing. International Journal of Supply Chain Management, 8(4), 1102–1107.
Sánchez, A. (2019). Digitalización, robotización, trabajo y vida: cartografías, debates y prácticas. Cuadernos de Relaciones Laborales, 37(2), 249–273. https://doi.org/10.5209/crla.66037
Sarwono, R., & Bernarto, I. (2020). Leading millennials to 4.0 organization. Management Science Let-ters, 10(4), 733–740. https://doi.org/10.5267/j.msl.2019.10.024
Schüffler, A. S., Thim, C., Haase, J., Gronau, N., & Kluge, A. (2020). Information Processing in Work Environment 4.0 and the Beneficial Impact of Intentional Forgetting on Change Management. Zeitschrift Für Arbeits- Und Organisationspsychologie A&O, 64(1), 17–29. https://doi.org/10.1026/0932-4089/a000307
SEGOB (2018). Norma Oficial Mexicana NOM-035-STPS-2018, Factores de riesgo psicosocial en el trabajo-Identificación, análisis y prevención. Diario Oficial de la Federación [Internet]. Available from: https://dof.gob.mx/nota_detalle.php?codigo=5541828&fecha=23/10/2018.
Segura, Á., Diez, H. V., Barandiaran, I., Arbelaiz, A., Álvarez, H., Simões, B., … Ugarte, R. (2018). Visual computing technologies to support the Operator 4.0. Computers and Industrial Engineering, 139. https://doi.org/10.1016/j.cie.2018.11.060
Siemieniuch, C. E., Sinclair, M. A., & Henshaw, M. J. C. (2015). Global drivers, sustainable manufactur-ing and systems ergonomics. Applied Ergonomics, 51, 104–119. https://doi.org/10.1016/j.apergo.2015.04.018
Stachová, K., Papula, J., Stacho, Z., & Kohnová, L. (2019). External partnerships in employee education and development as the key to facing industry 4.0 challenges. Sustainability (Switzerland), 11(2). https://doi.org/10.3390/su11020345
Tay, S. I., Lee, T. C., Hamid, N. Z. A., & Ahmad, A. N. A. (2018). An overview of industry 4.0: Definition, components, and government initiatives. Journal of Advanced Research in Dynamical and Control Sys-tems, 10(14), 1379-1387.
van der Kleij, R., Hueting, T., & Schraagen, J. M. (2018). Change detection support for supervisory con-trollers of highly automated systems: Effects on performance, mental workload, and recovery of situa-tion awareness following interruptions. International Journal of Industrial Ergonomics, 66, 75–84. https://doi.org/10.1016/j.ergon.2018.02.010
Wixted, F., & O’ Sullivan, L. (2017). The moderating role of end-tidal CO2 on upper trapezius muscle activity in response to sustained attention. International Journal of Industrial Ergonomics, 61, 1–12. https://doi.org/10.1016/j.ergon.2017.04.003