Psychosocial factors related to the increasing automation of work processes: A systematic review

Raul Martinez-Balderrama

https://orcid.org/0000-0001-6723-2234

Mexico

Universidad Autónoma de Baja California image/svg+xml

Marcela Deyanira Rodriguez-Urrea

https://orcid.org/0000-0002-6943-7812

Mexico

Universidad Autónoma de Baja California image/svg+xml

Juan Pablo García-Vázquez

Mexico

Universidad Autónoma de Baja California image/svg+xml

Ismael Mendoza-Muñoz

https://orcid.org/0000-0002-0810-2090

Mexico

Universidad Autónoma de Baja California image/svg+xml

Gabriela Jacobo-Galicia

https://orcid.org/0000-0001-8390-300X

Mexico

Universidad Autónoma de Baja California image/svg+xml

|

Accepted: 2024-09-13

|

Published: 2024-10-08

DOI: https://doi.org/10.4995/wpom.21465
Funding Data

Downloads

Keywords:

Psychosocial Risks, Psychosocial Risk Factors at Work, Work Study, Industry 4.0

Supporting agencies:

This research was not funded

Abstract:

Purpose: To identify which psychosocial factors can be related to the increasing automation of work processes, determining practical implications relevant to the evaluation of psychosocial risk factors at work within organizations before the imminent transition towards industry 4.0

Design/methodology/approach: A systematic review of the literature was carried out. The review structure was based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) approach for the studies selection and the Noblit and Hare's meta-ethnographic approach for data analysis and synthesis.

Findings: Thirty-five studies were selected which passed all the selection stages. Six psychosocial risk factors were detected whose behaviors may be influenced by the increasing automation of work. Evidence suggests that the factors of development possibility, change management, mental load, routine content, and job insecurity may increase their exposure due to job modifications owing to new automation technologies. On the other hand, social relationships at work have the ability to positively influence the successful implementation of new automated processes.

Originality/value: The results obtained represent excellent indications of an overview of psychosocial risk factors that may increase their danger due to the increasing automation of work processes and Industry 4.0.

Show more Show less

References:

Ansari, F., Hold, P., & Khobreh, M. (2020). A knowledge-based approach for representing jobholder pro-file toward optimal human–machine collaboration in cyber physical production systems. CIRP Journal of Manufacturing Science and Technology, 28, 87–106. https://doi.org/10.1016/j.cirpj.2019.11.005

Ávila, S. F. (2015). Reliability analysis for socio-technical system, case propene pumping. Engineering Failure Analysis, 56, 177–184. https://doi.org/10.1016/j.engfailanal.2015.02.023

Bogataj, D., Battini, D., Calzavara, M., & Persona, A. (2019). The response latency in global production and logistics: A trade-off between robotization and globalization of a chain. Procedia Manufacturing, 39, 1428–1437. https://doi.org/10.1016/j.promfg.2020.01.309

Cimini, C., Lagorio, A., Pirola, F., & Pinto, R. (2019). Exploring human factors in Logistics 4.0: Empirical evidence from a case study. IFAC-PapersOnLine, 52(13), 2183–2188. https://doi.org/10.1016/j.ifacol.2019.11.529

David, B. (2017). Computer technology and probable job destructions in Japan: An evaluation. Journal of the Japanese and International Economies, 43, 77-87. https://doi.org/10.1016/j.jjie.2017.01.001

D’Addona, D. M., Bracco, F., Bettoni, A., Nishino, N., Carpanzano, E., & Bruzzone, A. A. (2018). Adap-tive automation and human factors in manufacturing: An experimental assessment for a cognitive ap-proach. CIRP Annals, 67(1), 455–458. https://doi.org/10.1016/j.cirp.2018.04.123

Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computeri-sation?. Technological forecasting and social change, 114, 254-280. https://doi.org/10.1016/j.techfore.2016.08.019

Gershwin, S. B. (2018). The future of manufacturing systems engineering. International Journal of Pro-duction Research, 56(1–2), 224–237. https://doi.org/10.1080/00207543.2017.1395491

Golightly, D., Sharples, S., Patel, H., & Ratchev, S. (2016). Manufacturing in the cloud: A human factors perspective. International Journal of Industrial Ergonomics, 55, 12–21. https://doi.org/10.1016/j.ergon.2016.05.011

Hogenboom, S., Rokseth, B., Vinnem, J. E., & Utne, I. B. (2018). Human reliability and the impact of control function allocation in the design of dynamic positioning systems. Reliability Engineering and System Safety, 194. https://doi.org/10.1016/j.ress.2018.12.019

Joe, J. C., O’Hara, J., Hugo, J. V., & Oxstrand, J. H. (2015). Function Allocation for Humans and Auto-mation in the Context of Team Dynamics. Procedia Manufacturing, 3(Ahfe), 1225–1232. https://doi.org/10.1016/j.promfg.2015.07.204

Kaczmarek, S. (2019). Mastering fourth industrial revolution through innovative personnel management - A study analysis on how game-based approaches affect competence development. IFAC-PapersOnLine, 52(13), 2332–2337. https://doi.org/10.1016/j.ifacol.2019.11.554

Kadir, B. A., & Broberg, O. (2020). Human well-being and system performance in the transition to indus-try 4.0. International Journal of Industrial Ergonomics, 76(February), 102936. https://doi.org/10.1016/j.ergon.2020.102936

Kadir, B. A., Broberg, O., & da Conceicao, C. S. (2019). Current research and future perspectives on hu-man factors and ergonomics in Industry 4.0. Computers & Industrial Engineering, 137, 106004. https://doi.org/10.1016/j.cie.2019.106004

Kazancoglu, Y., & Ozkan-Ozen, Y. D. (2018). Analyzing Workforce 4.0 in the Fourth Industrial Revolu-tion and proposing a road map from operations management perspective with fuzzy DEMATEL. Journal of Enterprise Information Management, 31(6), 891–907. https://doi.org/10.1108/JEIM-01-2017-0015

Kim, W., Kim, N., Lyons, J. B., & Nam, C. S. (2020). Factors affecting trust in high-vulnerability human-robot interaction contexts: A structural equation modelling approach. Applied Ergonomics, 85(November 2019), 103056. https://doi.org/10.1016/j.apergo.2020.103056

Kopacek, P. (2019). Robo-ethics a survey of developments in the field and their implications for social effects. IFAC-PapersOnLine, 52(25), 131–135. https://doi.org/10.1016/j.ifacol.2019.12.460

Körner, U., Müller-Thur, K., Lunau, T., Dragano, N., Angerer, P., & Buchner, A. (2019). Perceived stress in human–machine interaction in modern manufacturing environments—Results of a qualitative interview study. Stress and Health, 35(2), 187–199. https://doi.org/10.1002/smi.2853

Kurt, R. (2019). Industry 4.0 in terms of industrial relations and its impacts on labour life. Procedia com-puter science, 158, 590-601. https://doi.org/10.1016/j.procs.2019.09.093

Lee, S. M., Kim, M. C., Kim, J. H., & Seong, P. H. (2015). Optimization of automation: II. Estimation method of ostracism rate based on the loss of situation awareness of human operators in nuclear power plants. Annals of Nuclear Energy, 79, 93–100. https://doi.org/10.1016/j.anucene.2015.01.021

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., ... & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that eval-uate health care interventions: explanation and elaboration. Annals of internal medicine, 151(4), W-65. https://doi.org/10.7326/0003-4819-151-4-200908180-00136

Longo, F., Nicoletti, L., & Padovano, A. (2017). Smart operators in industry 4.0: A human-centered ap-proach to enhance operators’ capabilities and competencies within the new smart factory context. Com-puters and Industrial Engineering, 113, 144–159. https://doi.org/10.1016/j.cie.2017.09.016

Longo, F., Nicoletti, L., & Padovano, A. (2019). Emergency preparedness in industrial plants: A forward-looking solution based on industry 4.0 enabling technologies. Computers in Industry, 105, 99–122. https://doi.org/10.1016/j.compind.2018.12.003

Mattsson, S., Fast-Berglund, Å., Li, D., & Thorvald, P. (2018). Forming a cognitive automation strategy for Operator 4.0 in complex assembly. Computers and Industrial Engineering, 139. https://doi.org/10.1016/j.cie.2018.08.011

Micheler, S., Goh, Y. M., & Lohse, N. (2019). Innovation landscape and challenges of smart technologies and systems–a European perspective. Production and Manufacturing Research, 7(1), 503–528. https://doi.org/10.1080/21693277.2019.1687363

Nam, T. (2019). Citizen attitudes about job replacement by robotic automation. Futures, 109(February), 39–49. https://doi.org/10.1016/j.futures.2019.04.005

Noblit, G. W., & Hare, R. D. (1988). Meta-ethnography: Synthesizing qualitative studies (Vol. 11). sage.

Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. Systematic reviews, 5, 1-10. https://doi.org/10.1186/s13643-016-0384-4

Pacaux-Lemoine, M. P., & Trentesaux, D. (2019). ETHICAL RISKS of HUMAN-MACHINE SYMBIO-SIS in INDUSTRY 4.0: INSIGHTS from the HUMAN-MACHINE COOPERATION APPROACH. IFAC-PapersOnLine, 52(19), 19–24. https://doi.org/10.1016/j.ifacol.2019.12.077

Pacaux-Lemoine, M. P., Trentesaux, D., Zambrano Rey, G., & Millot, P. (2017). Designing intelligent manufacturing systems through Human-Machine Cooperation principles: A human-centered approach. Computers and Industrial Engineering, 111, 581–595. https://doi.org/10.1016/j.cie.2017.05.014

Panigrahi, D. (2021). The automation technologies emerging in 2021. Retrieved from https://www.smartindustry.com/articles/2021/the-automation-technologies-emerging-in-2021/#:~:text=Leading technologies such as artificial,for businesses in these industries

Patel, P. C., Devaraj, S., Hicks, M. J., & Wornell, E. J. (2018). County-level job automation risk and health: Evidence from the United States. Social Science and Medicine, 202(December 2017), 54–60. https://doi.org/10.1016/j.socscimed.2018.02.025

Pérez, L., Diez, E., Usamentiaga, R., & García, D. F. (2019). Industrial robot control and operator training using virtual reality interfaces. Computers in Industry, 109, 114–120. https://doi.org/10.1016/j.compind.2019.05.001

Pérez, L., Rodríguez-Jiménez, S., Rodríguez, N., Usamentiaga, R., García, D. F., & Wang, L. (2020). Sym-biotic human–robot collaborative approach for increased productivity and enhanced safety in the aero-space manufacturing industry. International Journal of Advanced Manufacturing Technology, 106(3–4), 851–863. https://doi.org/10.1007/s00170-019-04638-6

Peruzzini, M., & Pellicciari, M. (2017). A framework to design a human-centered adaptive manufacturing system for aging workers. Advanced Engineering Informatics, 33, 330–349. https://doi.org/10.1016/j.aei.2017.02.003

Ramzi, N., Ahmad, H., & Zakaria, N. (2019). A conceptual model on people approach and smart manu-facturing. International Journal of Supply Chain Management, 8(4), 1102–1107.

Sánchez, A. (2019). Digitalización, robotización, trabajo y vida: cartografías, debates y prácticas. Cuadernos de Relaciones Laborales, 37(2), 249–273. https://doi.org/10.5209/crla.66037

Sarwono, R., & Bernarto, I. (2020). Leading millennials to 4.0 organization. Management Science Let-ters, 10(4), 733–740. https://doi.org/10.5267/j.msl.2019.10.024

Schüffler, A. S., Thim, C., Haase, J., Gronau, N., & Kluge, A. (2020). Information Processing in Work Environment 4.0 and the Beneficial Impact of Intentional Forgetting on Change Management. Zeitschrift Für Arbeits- Und Organisationspsychologie A&O, 64(1), 17–29. https://doi.org/10.1026/0932-4089/a000307

SEGOB (2018). Norma Oficial Mexicana NOM-035-STPS-2018, Factores de riesgo psicosocial en el trabajo-Identificación, análisis y prevención. Diario Oficial de la Federación [Internet]. Available from: https://dof.gob.mx/nota_detalle.php?codigo=5541828&fecha=23/10/2018.

Segura, Á., Diez, H. V., Barandiaran, I., Arbelaiz, A., Álvarez, H., Simões, B., … Ugarte, R. (2018). Visual computing technologies to support the Operator 4.0. Computers and Industrial Engineering, 139. https://doi.org/10.1016/j.cie.2018.11.060

Siemieniuch, C. E., Sinclair, M. A., & Henshaw, M. J. C. (2015). Global drivers, sustainable manufactur-ing and systems ergonomics. Applied Ergonomics, 51, 104–119. https://doi.org/10.1016/j.apergo.2015.04.018

Stachová, K., Papula, J., Stacho, Z., & Kohnová, L. (2019). External partnerships in employee education and development as the key to facing industry 4.0 challenges. Sustainability (Switzerland), 11(2). https://doi.org/10.3390/su11020345

Tay, S. I., Lee, T. C., Hamid, N. Z. A., & Ahmad, A. N. A. (2018). An overview of industry 4.0: Definition, components, and government initiatives. Journal of Advanced Research in Dynamical and Control Sys-tems, 10(14), 1379-1387.

van der Kleij, R., Hueting, T., & Schraagen, J. M. (2018). Change detection support for supervisory con-trollers of highly automated systems: Effects on performance, mental workload, and recovery of situa-tion awareness following interruptions. International Journal of Industrial Ergonomics, 66, 75–84. https://doi.org/10.1016/j.ergon.2018.02.010

Wixted, F., & O’ Sullivan, L. (2017). The moderating role of end-tidal CO2 on upper trapezius muscle activity in response to sustained attention. International Journal of Industrial Ergonomics, 61, 1–12. https://doi.org/10.1016/j.ergon.2017.04.003

Show more Show less