Self-supervision of Hallucinations in Large Language Models: LLteaM

Authors

  • Sofía Correa Busquets Wird
  • Lucas Maccarini Llorens Wird

DOI:

https://doi.org/10.4995/jclr.2023.20408

Keywords:

large language model, hallucination, Chain-of-Thought prompting, self-supervision, retrieval-augmented generation

Abstract

Large language models like GPT and Claude have revolutionized the tech industry over the past year. However, as generative artificial intelligence, they are prone to hallucinations. A large language model hallucinates when it generates false or nonsensical text. As these models improve, these hallucinations become less obvious and more dangerous for users. This research explores the phenomenon in the context of automated email response for customer service. First, it proposes a taxonomy of hallucinations in large language models based on their linguistic nature, and second, a multi-agent system that allows for the self-supervision of such hallucinations. This system generates email responses but prevents their delivery if hallucinations are detected, thus reducing the risks of generative AI in productive environments. Experiments with various state-of-the-art language models reveal that the only successful model’s operating costs currently exceed those viable for operational deployment. Moreover, a drastic performance drop after a recent update to GPT-3.5-turbo suggests likely shortcomings in industrial applications driven by retrieval-augmented generation. Overall, the research advocates for a Machine Linguistics to analyze the outputs of large language models, suggesting that such a collaboration between Linguistics and Artificial Intelligence could help mitigate the social risks of hallucination.

Downloads

Download data is not yet available.

References

Anthropic. "Claude." 2023. Acceso el 13 de septiembre. https://claude.ai

Austin, John Langshaw. 1975. How to Do Things with Words. Cambridge: Harvard University Press. https://doi.org/10.1093/acprof:oso/9780198245537.001.0001

Bai, Yuntao, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. 2022. "Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback." arXiv preprint. https://doi.org/10.48550/arXiv.2204.05862

Bohannon, Molly. 2023. "Lawyer Used ChatGPT in Court-And Cited Fake Cases. A Judge Is Considering Sanctions." Forbes. Última actualización el 8 de junio. https://www.forbes.com/sites/mollybohannon/2023/06/08/lawyer-used-chatgpt-in-court-and-cited-fake-cases-a-judge-is-considering-sanctions/?sh=7dbd65b57c7f

Chase, Harrison. 2022. "LangChain." Acceso el 13 de septiembre. https://github.com/hwchase17/langchain

Chui, Michael, Mena Issler, Roger Roberts y Lareina Yee. 2023. "McKinsey Technology Trends Outlook 2023." McKinsey Insights. Última actualización el 20 de julio. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-top-trends-in-tech

Google. 2023. "Bard." Última actualización el 13 de julio. https://bard.google.com

Grice, H. P. 1975. "Logic and Conversation." In Syntax and Semantics, vol. 3: Speech Acts, edited by Peter Cole and Jerry L. Morgan, 41-58. New York: Academic Press. https://doi.org/10.1163/9789004368811_003

Ji, Ziwei, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea Madotto y Pascale Fung. 2023. "Survey of Hallucination in Natural Language Generation." ACM Computing Surveys 55 (12): 1-38. https://doi.org/10.1145/3571730

Johnson, Jeff, Matthijs Douze y Hervé Jégou. 2017. "Billion-scale Similarity Search with GPUs." arXiv preprint. https://doi.org/10.48550/arXiv.1702.08734

Liu, Jerry. 2022. "LlamaIndex." Acceso el 6 de septiembre. https://github.com/jerryjliu/llama_index. doi:10.5281/zenodo.1234

Microsoft. 2023. "Microsoft and OpenAI extend partnership." Acceso el 6 de septiembre. https://blogs.microsoft.com/blog/2023/01/23/microsoftandopenaiextendpartnership/.

Maynez, Joshua, Shashi Narayan, Bernd Bohnet y Ryan McDonald. 2020. "On Faithfulness and Factuality in Abstractive Summarization." arXiv preprint. https://doi.org/10.18653/v1/2020.acl-main.173

OpenAI. 2022. "ChatGPT." Acceso el 15 de septiembre. https://chat.openai.com

OpenAI. 2023a. "GPT-4 Technical Report." arXiv preprint. https://doi.org/10.48550/arXiv.2303.08774

OpenAI. 2023b. "Chat Completion API." Acceso el 16 de junio. https://api.openai.com/v1

OpenAI. 2023c. "Chat Completion API." Acceso el 22 de agosto. https://api.openai.com/v1

de Saussure, Ferdinand. 1916. Cours de Linguistique Générale. Taiwán: Payot.

Searle, John. 1979. Expression and Meaning: Studies in the Theory of Speech Acts. New York: Cambridge University Press. https://doi.org/10.1017/CBO9780511609213

Sivasubramanian, Swami. 2023. "Announcing New Tools for Building with Generative AI on AWS." AWS Machine Learning Blog. Última actualización el 13 de abril. https://aws.amazon.com/blogs/machine-learning/announcing-new-tools-for-building-with-generative-ai-on-aws

Tharp, Carrie y Lee Moore. 2023. "Helping Businesses with Generative AI." Google Cloud Blog. Última actualización el 7 de junio. https://cloud.google.com/blog/products/ai-machine-learning/generative-ai-for-industries

Touvron, Hugo, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, et al. 2023. "LLaMA: Open and Efficient Foundation Language Models." arXiv preprint. https://doi.org/10.48550/arXiv.2302.13971

Turing, Alan Mathison. 1950. "Computing Machinery and Intelligence." Mind LIX (236): 433-460. https://doi.org/10.1093/mind/LIX.236.433

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser e Illia Polosukhin. 2017. "Attention Is All You Need." arXiv preprint. https://doi.org/10.48550/arXiv.1706.03762

Wei, Jason, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le y Denny Zhou. 2022a. "Chain-of-Thought Prompting Elicits Reasoning in Large Language Models." arXiv preprint. https://doi.org/10.48550/arXiv.2201.11903

Wei, Jason, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai y Quoc V. Le. 2022b. "Finetuned Language Models Are Zero-Shot Learners." arXiv preprint. https://doi.org/10.48550/arXiv.2109.01652

Published

2023-12-12

Issue

Section

Articles