Classification of land use and land cover through machine learning algorithms: a literature review
DOI:
https://doi.org/10.4995/raet.2023.19014Keywords:
land cover, land use, random forest, support vector machine, artificial neural network, decision trees, machine learningAbstract
Methodologies for land use and land cover (LULC) classification have demonstrated significant advances in recent years, such as the incorporation of machine learning (ML) classification techniques, which have gained popularity and acceptance of their capabilities. However, the lack of methodological consensus has led to a disorderly application of ML methods in the classification of LULC. Through the literature review, we identified some points in how the methods are being implemented as possible implications for the classification of LULC. For this review, only scientific articles published between 2000 and 2020 were analyzed that incorporated any of the following algorithms for LULC classification: K-nearest neighbor (KNN), random forest (RF), support vector machine (SVM), artificial neural network (ANN) and decision trees (DT). Using the results of the literature review, we were able to confirm the potential of the algorithms. We also identified areas for improvement in the application of machine learning to the classification of LULC. These areas include the integration of data sets, parameterization of algorithms, and evaluation of results. Consequently, we generated a selection of guidelines based on the recommendations of various authors that we consider will be useful for users interested in these methods.
Downloads
References
Abdel-Rahman, E.M., Mutanga, O., Adam, E., & Ismail, R. 2014. Detecting Sirex noctilio greyattacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers. ISPRS Journal of Photogrammetry and Remote Sensing, 88, 48-59. https://doi.org/10.1016/j.isprsjprs.2013.11.013
Abdi, A.M. 2020. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIScience & Remote Sensing, 57(1), 1-20. https://doi.org/10.1080/15481603.2019.1650447
Adam, E., Mutanga, O., Odindi, J., & Abdel-Rahman, E.M. 2014. Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. International Journal of Remote Sensing, 35(10), 3440-3458. https://doi.org/10.1080/01431161.2014.903435
Aguilera, M. 2020. Classication Of Land-Cover Through Machine Learning Algorithms For Fusion Of Sentinel-2a And Planetscope Imagery. 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), 246-253. https://doi.org/10.1109/LAGIRS48042.2020.9165632
Alpaydin, E. 2014. Introduction to Machine Learning (3.a ed.). MIT Press.
Bashir, D., Montañez, G.D., Sehra, S., Segura, P.S., & Lauw, J. 2020. An Information-Theoretic Perspective on Overfitting and Underfitting. En M. Gallagher, N. Moustafa, & E. Lakshika (Eds.), AI 2020: Advances in Artificial Intelligence (pp. 347-358). Springer International Publishing. https://doi.org/10.1007/978-3-030-64984-5_27
Belgiu, M., & Drăguţ, L. 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
Bishop, C.M. 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag.
Blum, A.L., & Langley, P. 1997. Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1), 245-271. https://doi.org/10.1016/S0004-3702(97)00063-5
Breiman, L. 2001. Random Forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
Campbell, J.B., & Wynne, R.H. 2011. Introduction to Remote Sensing, Fifth Edition. Guilford Publications. https://books.google.com.mx/books?id=NkLmDjSS8TsC
Card, D. 1982. Using map category marginal frequencies to improve estimates of thematic map accuracy. Photogrammetric Engineering and Remote Sensing, 48(3), 431-439.
Chakraborty, A., Sachdeva, K., & Joshi, P.K. 2016. Mapping long-term land use and land cover change in the central Himalayan region using a treebased ensemble classification approach. Applied Geography, 74, 136-150. https://doi.org/10.1016/j.apgeog.2016.07.008
Chang, N.-B., & Bai, K. 2018. Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing (1.a ed.). CRC Press. https://doi.org/10.1201/9781315154602
Chen, Y., Dou, P., & Yang, X. 2017. Improving Land Use/Cover Classification with a Multiple Classifier System Using AdaBoost Integration Technique. Remote Sensing, 9(10), 1055. https://doi.org/10.3390/rs9101055
Christovam, L.E., Pessoa, G.G., Shimabukuro, M.H., & Galo, M.L.B.T. 2019. Land use and land cover classification using hyperspectral imagery: evaluating the performance of spectral angle mapper, support vector machine and random forest. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W13, 1841-1847. https://doi.org/10.5194/isprs-archives-XLII-2-W13-1841-2019
Congalton, R.G., & Green, K. 2019. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Third Edition (3.a ed.). CRC Press. https://doi.org/10.1201/9780429052729
Demirkan, D.Ç., Koz, A., & Düzgün, H.Ş. 2020. Hierarchical classification of Sentinel 2-a images for land use and land cover mapping and its use for the CORINE system. Journal of Applied Remote Sensing, 14(02), 1. https://doi.org/10.1117/1.JRS.14.026524
Di Shi, & Yang, X. 2017. A Relative Evaluation of Random Forests for Land Cover Mapping in an Urban Area. Photogrammetric Engineering & Remote Sensing, 83(8), 541-552. https://doi.org/10.14358/PERS.83.8.541
Dong, J., Metternicht, G., Hostert, P., Fensholt, R., & Chowdhury, R.R. 2019. Remote sensing and geospatial technologies in support of a normative land system science: Status and prospects. Current Opinion in Environmental Sustainability, 38, 44-52. https://doi.org/10.1016/j.cosust.2019.05.003
Elatawneh, A., Kalaitzidis, C., Petropoulos, G.P., & Schneider, T. 2014. Evaluation of diverse classification approaches for land use/cover mapping in a Mediterranean region utilizing Hyperion data. International Journal of Digital Earth, 7(3), 194-216. https://doi.org/10.1080/17538947.2012.671378
Foody, G.M. 2004. Thematic map comparison. Photogrammetric Engineering & Remote Sensing, 70(5), 627-633. https://doi.org/10.14358/PERS.70.5.627
Foody, G.M., & Mathur, A. 2004. Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification. Remote Sensing of Environment, 93(1-2), 107-117. https://doi.org/10.1016/j.rse.2004.06.017
Ganbold, Ganchimeg, & Chasia, Stanley. 2017. Comparison between Possibilistic c-Means (PCM) and Artificial Neural Network (ANN) Classification Algorithms in Land use/ Land cover Classification. International Journal of Knowledge Content Development & Technology, 7(1), 57-78. https://doi.org/10.5865/IJKCT.2017.7.1.057
Ge, G., Shi, Z., Zhu, Y., Yang, X., & Hao, Y. 2020. Land use/cover classification in an arid desertoasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms. Global Ecology and Conservation, 22, e00971. https://doi.org/10.1016/j.gecco.2020.e00971
Géron, A. 2019. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O'Reilly Media.
Gislason, P.O., Benediktsson, J.A., & Sveinsson, J.R. 2006. Random Forests for land cover classification. Pattern Recognition Letters, 27(4), 294-300. https://doi.org/10.1016/j.patrec.2005.08.011
Gualtieri, J.A., & Cromp, R.F. 1999. Support vector machines for hyperspectral remote sensing classification. R.J. Mericsko, Ed.; pp. 221-232. https://doi.org/10.1117/12.339824
Halmy, M.W.A., & Gessler, P.E. 2015. The application of ensemble techniques for land-cover classification in arid lands. International Journal of Remote Sensing, 36(22), 5613-5636. https://doi.org/10.1080/01431161.2015.1103915
Hastie, T., Tibshirani, R., Friedman, J.H., & Friedman, J.H. 2009. The elements of statistical learning: Data mining, inference, and prediction (Vol. 2). Springer. https://doi.org/10.1007/978-0-387-84858-7
Herold, M., Latham, J.S., Di Gregorio, A., & Schmullius, C.C. 2006. Evolving standards in land cover characterization. Journal of Land Use Science, 1(2-4), 157-168. https://doi.org/10.1080/17474230601079316
Heydari, S.S., & Mountrakis, G. 2018. Effect of classifier selection, reference sample size, reference class distribution and scene heterogeneity in perpixel classification accuracy using 26 Landsat sites. Remote Sensing of Environment, 204, 648-658. https://doi.org/10.1016/j.rse.2017.09.035
Huang, C., Davis, L.S., & Townshend, J.R.G. 2002. An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23(4), 725-749. https://doi.org/10.1080/01431160110040323
Jamali, A. 2019. A fit-for-purpose algorithm for environmental monitoring based on maximum likelihood, support vector machine and random forest. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W7, 25-32. https://doi.org/10.5194/isprs-archives-XLII-3-W7-25-2019
Jamil, A., & Bayram, B. 2018. Tree Species Extraction and Land Use/Cover Classification From HighResolution Digital Orthophoto Maps. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(1), 89-94. https://doi.org/10.1109/JSTARS.2017.2756864
Jia, K., Liang, S., Wei, X., Yao, Y., Su, Y., Jiang, B., & Wang, X. 2014. Land Cover Classification of Landsat Data with Phenological Features Extracted from Time Series MODIS NDVI Data. Remote Sensing, 6(11), 11518-11532. https://doi.org/10.3390/rs61111518
Jozdani, S.E., Johnson, B.A., & Chen, D. 2019. Comparing Deep Neural Networks, Ensemble Classifiers, and Support Vector Machine Algorithms for Object-Based Urban Land Use/Land Cover Classification. Remote Sensing, 11(14), 1713. https://doi.org/10.3390/rs11141713
Kamusoko, C. 2019. Remote Sensing Image Classification in R. Springer Singapore. https://doi.org/10.1007/978-981-13-8012-9
Karakacan Kuzucu, A., & Bektas Balcik, F. 2017. Testing the potential of vegetation indices for land use/cover classification using high resolution data. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-4/W4, 279-283. https://doi.org/10.5194/isprs-annals-IV-4-W4-279-2017
Kelleher, J.D., Namee, B.M., & D'Arcy, A. 2015. Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. MIT Press.
Knox, S.W. 2018. Machine learning: A concise introduction. John Wiley & Sons. https://doi.org/10.1002/9781119439868
Koomen, E., Stillwell, J.(2007) Modelling land-use change en Koomen, E., Stillwell, J., Bakema, A., & Scholten, H.J. Modelling land-use change: Progress and applications (Vol. 90)(1-21). Springer Science & Business Media. https://doi.org/10.1007/1-4020-5648-6_1
Kuhn, M., & Johnson, K. 2013. Applied Predictive Modeling. Springer New York. https://doi.org/10.1007/978-1-4614-6849-3
Li, C., Wang, J., Wang, L., Hu, L., & Gong, P. 2014. Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery. Remote Sensing, 6(2), 964-983. https://doi.org/10.3390/rs6020964
Lillesand, T., Kiefer, R.W., & Chipman, J. 2015. Remote Sensing and Image Interpretation. Wiley.
Lu, D., & Weng, Q. 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823-870. https://doi.org/10.1080/01431160600746456
Marsland, S. 2014. Machine Learning: An Algorithmic Perspective (2.a ed.). Chapman and Hall/CRC. https://doi.org/10.1201/b17476
Mas, J.F., & Flores, J.J. 2008. The application of artificial neural networks to the analysis of remotely sensed data. International Journal of Remote Sensing, 29(3), 617-663. https://doi.org/10.1080/01431160701352154
Maxwell, A.E., Warner, T.A., & Fang, F. 2018. Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sensing, 39(9), 2784-2817. https://doi.org/10.1080/01431161.2018.1433343
Mfuka, C., Zhang, X., & Byamukama, E. 2019. Mapping and Quantifying White Mold in Soybean across South Dakota Using Landsat Images. Journal of Geographic Information System, 11(03), 331-346. https://doi.org/10.4236/jgis.2019.113020
Müller, A.C., & Guido, S. 2016. Introduction to machine learning with Python: A guide for data scientists. O'Reilly Media, Inc.
Myburgh, G., & Niekerk, A. 2013. Effect of feature dimensionality on object-based land cover classification: A comparison of three classifiers. South African Journal of Geomatics. https://www.semanticscholar.org/paper/Effect-of-featuredimensionality-on-object-based-A-Myburgh-Niekerk/298f8341429248311f9a688741d0ee4344aa404c
Pedregosa, F., Varoquaux, Ga"el, Gramfort, A., Michel, V., Thirion, B., Grisel, O., … others. 2011. Scikitlearn: Machine learning in Python. Journal of Machine Learning Research, 12(Oct), 2825-2830.
Petropoulos, G.P., Kalaitzidis, C., & Prasad Vadrevu, K. 2012. Support vector machines and objectbased classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery. Computers & Geosciences, 41, 99-107. https://doi.org/10.1016/j.cageo.2011.08.019
Pontius, R.G., & Millones, M. 2011. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407-4429. https://doi.org/10.1080/01431161.2011.552923
Puertas, O.L., Brenning, A., & Meza, F.J. 2013. Balancing misclassification errors of land cover classification maps using support vector machines and Landsat imagery in the Maipo river basin (Central Chile, 1975-2010). Remote Sensing of Environment, 137, 112-123. https://doi.org/10.1016/j.rse.2013.06.003
Qian, Y., Zhou, W., Yan, J., Li, W., & Han, L. 2015. Comparing Machine Learning Classifiers for ObjectBased Land Cover Classification Using Very High Resolution Imagery. Remote Sensing, 7(1), Art. 1. https://doi.org/10.3390/rs70100153
Olofsson, P., Foody, G.M., Herold, M., Stehman, S. V., Woodcock, C.E., & Wulder, M.A. 2014. Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42-57. https://doi.org/10.1016/j.rse.2014.02.015
R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.Rproject.org/.
Ramezan, C.A., Warner, T.A., Maxwell, A.E., & Price, B.S. 2021. Effects of Training Set Size on Supervised Machine-Learning Land-Cover Classification of Large-Area High-Resolution Remotely Sensed Data. Remote Sensing, 13(3), Art. 3. https://doi.org/10.3390/rs13030368
Rana, V.K., & Venkata Suryanarayana, T.M. 2020. Performance evaluation of MLE, RF and SVM classification algorithms for watershed scale land use/land cover mapping using sentinel 2 bands. Remote Sensing Applications: Society and Environment, 19, 100351. https://doi.org/10.1016/j.rsase.2020.100351
Richards, J.A. 2013. Remote sensing digital image analysis: An introduction (Fifth edition). Springer. https://doi.org/10.1007/978-3-642-30062-2
Saini, R., & Ghosh, S.K. 2018. Exploring capabilities of sentinel-2 for vegetation mapping using random forest. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3, 1499-1502. https://doi.org/10.5194/isprs-archives-XLII-3-1499-2018
Shalev-Shwartz, S., & Ben-David, S. 2014. Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press. https://doi.org/10.1017/CBO9781107298019
Shih, H., Stow, D.A., & Tsai, Y.H. 2019. Guidance on and comparison of machine learning classifiers for Landsat-based land cover and land use mapping. International Journal of Remote Sensing, 40(4), 1248-1274. https://doi.org/10.1080/01431161.2018.1524179
Syifa, M., Park, S.J., & Lee, C.W. 2020. Detection of the Pine Wilt Disease Tree Candidates for Drone Remote Sensing Using Artificial Intelligence Techniques. Engineering, 6(8), 919-926. https://doi.org/10.1016/j.eng.2020.07.001
Szuster, B.W., Chen, Q., & Borger, M. 2011. A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones. Applied Geography, 31(2), 525-532. https://doi.org/10.1016/j.apgeog.2010.11.007
Talukdar, S., Singha, P., Mahato, S., Shahfahad, Pal, S., Liou, Y.-A., & Rahman, A. 2020. LandUse Land-Cover Classification by Machine Learning Classifiers for Satellite Observations-A Review. Remote Sensing, 12(7), 1135. https://doi.org/10.3390/rs12071135
Tassi, A., & Vizzari, M. 2020. Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms. Remote Sensing, 12(22), 3776. https://doi.org/10.3390/rs12223776
Thanh Noi, P., & Kappas, M. 2017. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors, 18(2), 18. https://doi.org/10.3390/s18010018
Tso, B., & Mather, P.M. 2009. Classification methods for remotely sensed data (2nd ed). CRC Press.
Thomas, I.L., Ching, N.P., Benning, V.M., & D'aguanno, J.A. 1987. Review Article A review of multi-channel indices of class separability. International Journal of Remote Sensing, 8(3), 331-350. https://doi.org/10.1080/01431168708948645
Vélez-Alvarado, D.A., & Álvarez-Mozos, J. 2020. Clasificación de usos y cubiertas del suelo y análisis de cambios en los alrededores de la Reserva Ecológica Manglares Churute (Ecuador) mediante una serie de imágenes Sentinel-1. Revista de Teledetección, 56, 131. https://doi.org/10.4995/raet.2020.14099
Wilson, R.A., & Keil, F.C. (Eds.). 1999. The MIT encyclopedia of the cognitive sciences. MIT Press. https://doi.org/10.7551/mitpress/4660.001.0001
Yu, L., Liang, L., Wang, J., Zhao, Y., Cheng, Q., Hu, L., Liu, S., Yu, L., Wang, X., Zhu, P., Li, X., Xu, Y., Li, C., Fu, W., Li, X., Li, W., Liu, C., Cong, N., Zhang, H., … Gong, P. 2014. Meta-discoveries from a synthesis of satellite-based land-cover mapping research. International Journal of Remote Sensing, 35(13), 4573-4588. https://doi.org/10.1080/01431161.2014.930206
Downloads
Published
Issue
Section
License
Copyright (c) 2023 René Tobar Díaz, Yan Gao, Jean François Mas, Víctor Hugo Cambrón-Sandoval
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International