Analysis of climatic and anthropogenic forcing in the reduction of water in the Copiapó river basin, Chile (28° S) using satellite products
DOI:
https://doi.org/10.4995/raet.2024.20047Keywords:
evapotranspiration, irrigation, remote sensing, SWE, water resourcesAbstract
A water shortage has been affecting Chile in recent years. Due to the negative effects that water deficit can generate on the environment and the population, an improved understanding of the influence of climatic and anthropogenic factor on water depletion is needed, especially in arid regions such as northern Chile. The main objective of this study is to assess the implications of climatic and anthropogenic variables on the water deficit of the Copiapó River basin, Atacama region, Chile. The study period spans from 2001/02 to 2021/22 seasons. MODIS satellite products (MOD10a2 and MOD16a2) and Landsat images were used for this analysis. Water extraction information obtained from the Chilean National Water Agency (DGA) was also included for this study. The analyzed variables include actual evapotranspiration (ETr), Snow Water Equivalent (SWE), and water use for mining and agriculture. Changes in Snow Water Equivalent (SWE) in the Andes were analyzed as climatic variables, while changes in irrigation and water extraction for mining were used as anthropogenic variables. The amount of water lost by the basin through actual evapotranspiration (ETr) was estimated to quantify changes in water reduction.
The results show a significant reduction (p<0.05) of water at a rate of 0.7 Mton/year. Through correlation analysis, an important relationship was found between this reduction and the consumption of the mining sector (-0.52), suggesting that the anthropogenic forcing influences the water deficit more than the climate. Enhanced monitoring of water extraction will contribute to a more accurate identification of its effects on water availability.
Downloads
References
Anderson, M.C., Allen, R.G., Morse, A., & Kustas, W.P. 2012. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sensing of Environment, 122, 50–65. https://doi.org/10.1016/j.rse.2011.08.025
Bennison, G., von Igel, W., Haque, N., Román, E., & Claro, E. 2016. Eficiencia hídrica en la Región de Atacama: Evaluación de brechas identificadas a la luz de la experiencia internacional. Santiago, CSIRO Chile. https://research.csiro.au/gestioncopiapo/wp-content/uploads/sites/216/2018/01/039-Informe-Final-22-04-2016_COMPLETO_2.0.pdf
Boisier, J.P., Rondanelli, R., Garreaud, R.D., & Muñoz, F. 2016. Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile. Geophysical Research Letters, 43(1), 413–421. https://doi.org/10.1002/2015GL067265
Burger, F., Brock, B., & Montecinos, A. 2018. Seasonal and elevational contrasts in temperature trends in Central Chile between 1979 and 2015. Global and Planetary Change, 162, 136–147. https://doi.org/10.1016/j.gloplacha.2018.01.005
Castro, L., & Gironás, J. 2021. Precipitation, Temperature and Evaporation. In B. Fernández & J. Gironás (Eds.), Water Resources of Chile, 8, 31–60. https://doi.org/10.1007/978-3-030-56901-3_3
COCHILCO. 2018. Inversión en la minería chilena - Cartera de proyectos 2014 -2023.
CR2. 2015. La megasequía 2010-2015: Una lección para el futuro. https://www.uchile.cl/documentos/espanol_55984_10_5251.pdf.
DGA. 2004. Cuenca del Río Copiapó. https://mma.gob.cl/wp-content/uploads/2017/12/Copiapo.pdf
División de Ingeniería Hidráulica y Ambiental - DICTUC. 2010. Análisis integrado de gestión en cuenca del Río Copiapó. https://snia.mop.gob.cl/repositoriodga/handle/20.500.13000/5287
Donoso, G. 2021. Management of Water Resources in Agriculture in Chile and its Challenges. International Journal of Agriculture and Natural Resources, 48(3), 171–185. https://doi.org/10.7764/ijanr.v48i3.2328
Donoso, G., Lictevout, E., & Rinaudo, J.-D. 2020. Groundwater Management Lessons from Chile. In Sustainable Groundwater Management: A Comparative Analysis of French and Australian Policies and Implications to Other Countries (pp.481–511). https://doi.org/10.1007/978-3-030-32766-8_25
Fernández, B. & Gironás J. 2021. Water Resources of Chile, World Water Resources, 8, https://doi.org/10.1007/978-3-030-56901-3_2
Garreaud, R.D., Boisier, J.P., Rondanelli, R., Montecinos, A., Sepúlveda, H.H., & Veloso-Aguila, D. 2020. The Central Chile Mega Drought (2010– 2018): A climate dynamics perspective. International Journal of Climatology, 40(1), 421–439. https://doi.org/10.1002/joc.6219
Gascoin, S., Lhermitte, S., Kinnard, C., Bortels, K., & Liston, G.E. 2013. Wind effects on snow cover in Pascua-Lama, Dry Andes of Chile. Advances in Water Resources, 55, 25–39. https://doi.org/10.1016/j.advwatres.2012.11.013
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
Hamed, K.H., & Rao, A.R. 1998. A modified Mann-Kendall trend test for autocorrelated data. In Journal of Hydrology, 204. https://doi.org/10.1016/S0022-1694(97)00125-X
Hernández-López, M.F., Braud, I., Gironás, J., Suárez, F., & Muñoz, J.F. 2016. Modelling evaporation processes in soils from the Huasco salt flat basin, Chile. Hydrological Processes, 30(25), 4704–4719. https://doi.org/10.1002/hyp.10987
HÍDRICA Consultores SPA. 2018. Herramientas de Gestión y Actualización de Los Modelos Numéricos del Acuífero de Copiapó.
HIDROMAS CEF. 2013. Actualización de la demanda hídrica de Copiapó. https://www.repositoriodirplan.cl/handle/20.500.12140/25814
Houston, J. 2006. Variability of precipitation in the Atacama Desert: Its causes and hydrological impact. International Journal of Climatology, 26(15), 2181– 2198. https://doi.org/10.1002/joc.1359
INE. 2017. Resultados CENSO 2017 por país, regiones y comunas. http://resultados.censo2017.cl/
Jara, F., Lagos-Zúñiga, M., Fuster, R., Mattar, C., & McPhee, J. 2021. Snow processes and climate sensitivity in an Arid Mountain Region, Northern Chile. Atmosphere, 12(4). https://doi.org/10.3390/atmos12040520
Johnson, E., Yáñez, J., Ortiz, C., & Muñoz, J. 2010. Evaporation from shallow groundwater in closed basins in the Chilean Altiplano. Hydrological Sciences Journal, 55(4), 624–635. https://doi.org/10.1080/02626661003780458
Juliá, C., Montecinos, S., & Maldonado, A. 2008. Características Climáticas de la Región de Atacama. In F.A. Squeo, G. Arancio, & J.R. Gutierrez (Eds.), Libro Rojo de la Flora Nativa y de los Sitios Prioritarios para su Conservación: Región de Atacama, 3, 25–42. http://www.observatoriocaldera.cl/territorio/590/articles-64753_documento.pdf
Malmros, J.K., Mernild, S.H., Wilson, R., Tagesson, T., & Fensholt, R. 2018. Snow cover and snow albedo changes in the central Andes of Chile and Argentina from daily MODIS observations (2000–2016). Remote Sensing of Environment, 209, 240–252. https://doi.org/10.1016/j.rse.2018.02.072
Meza, F.J. 2013. Recent trends and ENSO influence on droughts in Northern Chile: An application of the Standardized Precipitation Evapotranspiration Index. Weather and Climate Extremes, 1, 51–58. https://doi.org/10.1016/j.wace.2013.07.002
Montecino, H.C., Staub, G., Ferreira, V.G., & Parra, L.B. 2016. Monitoring groundwater storage in northern Chile based on satellite observations and data simulation. Boletim de Ciencias Geodesicas, 22(1), 1–15. https://doi.org/10.1590/S1982-21702016000100001
Oyarzún, J., & Oyarzún, R. 2011. Sustainable development threats, inter-sector conflicts and environmental policy requirements in the arid, mining rich, Northern Chile territory. Sustainable Development, 19(4), 263–274. https://doi.org/10.1002/sd.441
Partarrieu, U., Parra, A., Peña, C., Ferrada, F.K., Sepúlveda, A. V, Valenzuela, D.P., & Vergara, S. 2009. Plan de Gestión para la Cuenca del Copiapó [Management plan for the Copiapó Basin] (Report ADM 5374).
Réveillet, M., MacDonell, S., Gascoin, S., Kinnard, C., Lhermitte, S., & Schaffer, N. 2020. Impact of forcing on sublimation simulations for a high mountain catchment in the semiarid Andes. Cryosphere, 14(1), 147–163. https://doi.org/10.5194/tc-14-147-2020
Riggs, G.A., & Hall, D.K. 2015. MODIS Snow Products Collection 6 User Guide.
Rinaudo, J.D., & Donoso, G. 2019. State, market or community failure? Untangling the determinants of groundwater depletion in Copiapó (Chile). International Journal of Water Resources Development, 35(2), 283–304. https://doi.org/10.1080/07900627.2017.1417116
Ruiz Pereira, S.F., & Veettil, B.K. 2019. Glacier decline in the Central Andes (33°S): Context and magnitude from satellite and historical data. Journal of South American Earth Sciences, 94. https://doi.org/10.1016/j.jsames.2019.102249
Saavedra, F.A., Kampf, S.K., Fassnacht, S.R., & Sibold, J.S. 2018. Changes in Andes snow cover from MODIS data, 2000-2016. Cryosphere, 12(3), 1027– 1046. https://doi.org/10.5194/tc-12-1027-2018
Sen, P.K. 1968. Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934
Suárez, F., Muñoz, J.F., Fernández, B., Dorsaz, J.M., Hunter, C.K., Karavitis, C.A., & Gironás, J. 2014. Integrated water resource management and energy requirements for water supply in the Copiapó River basin, Chile. Water (Switzerland), 6(9), 2590–2613. https://doi.org/10.3390/w6092590
Valdés-Pineda, R., Pizarro, R., García-Chevesich, P., Valdés, J.B., Olivares, C., Vera, M., Balocchi, F., Pérez, F., Vallejos, C., Fuentes, R., Abarza, A., & Helwig, B. 2014. Water governance in Chile: Availability, management and climate change. Journal of Hydrology, 519(PC), 2538–2567. https://doi.org/10.1016/j.jhydrol.2014.04.016
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Abel Gonzalez, Cristian Mattar, Héctor H. Sepúlveda
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International