Estimation of sediment volumes due to rainfall erosion using RUSLE model in basins of the province of Manabí, Ecuador
DOI:
https://doi.org/10.4995/raet.2024.20147Keywords:
soil erosion, RUSLE, sediment volumes, remote sensing, ManabíAbstract
Sediment production due to rainfall erosion is a topic of great interest because its lack of knowledge can represent serious dangers for nearby communities and infrastructures. Several methods have been developed inrecent years to quantify sediments, but their complexity, precision, and accuracy vary depending on the approach used. However, many of these models require the use of extensive precipitation time series, but in Ecuador, the meteorological stations present a worrying lack of data and their spatial distribution is not homogeneous, which generates an incorrect rainfall estimation in the analyzed territory. To solve this problem, it is possible to implement methodologies that use satellite raster information. The objective of the present investigation was to estimate the volumes of sediments in the hydrographic basins of the province of Manabí, through the implementation of the RUSLE model and an empirical procedure that requires the use of the apparent density of the soil in its three main textures (sand, clay and silt). The methodology considered the delimitation of the analyzed basins, the evaluation of satellite raster data to determine the six parameters of the RUSLE model between 2001 and 2020, and the estimation of apparent density through an innovative method. The delimitation of the basins was obtained through regional sources; the satellite information was obtained from official web sources; the typical values of the apparent density were obtained from sources at global scale; and the validation of the apparent density data was carried out by means of on-site sampling. The results allowed identifying soil erosion rates that vary between 0.10 ton ha-1 and 3252.22 ton ha-1, which generated an estimate of sediments between 0.06 m3 year-1 and 692.43 m3 year-1 at the pixel level. The average apparent density was 1.49 ton m-3, which demonstrates a high sand content in the basins of Manabí. The data validation revealed an excellent compatibility between the proposed methodology and the conventional on-site analysis, which is reflected in an average difference of less than 3%. The information obtained will allow the competent government entities to establish mitigation programs to deal with the loss of soil due to rainfall erosion and to control the sediments production.
Downloads
References
Ahmed, I.A., Talukdar, S., Islam, A.R.M.T., Rihan, M., Malafaia, G., Bera, S., Ramana, G.V., Rahman, A. 2023. Contribution and behavioral assessment of physical and anthropogenic factors for soil erosion using integrated deep learning and game theory. Journal of Cleaner Production, 137689. https://doi.org/10.1016/j.jclepro.2023.137689
Al Rammahi, A.H.J., Khassaf S.I. 2018. Estimation of soil erodibility factor in RUSLE equation for Euphrates River watershed using GIS. GEOMATE Journal, 14(46), 164–169. https://doi.org/10.21660/2018.46.87788
Antúnez, A., Felmer, S., Vidal, M., Morales, R., Coz, E., Fuentes, F. 2015. Propiedades físico-hídricas del suelo en el cultivo del maíz grano. Boletín FAO, 31- 50.
Borrelli, P., Alewell, C., Alvarez, P., Anache, J.A.A., Baartman, J., Ballabio, C., Bezak, N., Biddoccu, M., Cerdà, A., Chalise, D., Chen, S., Chen, W., De Girolamo, A., Gessesse, G., Deumlich, D., Diodato, N., Efthimiou, N., Erpul, G., Fiener, P., Freppaz, M., Panagos, P. 2021. Soil erosion modelling: A global review and statistical analysis. Science of the total environment, 780, 146494. https://doi.org/10.1016/j.scitotenv.2021.146494
Borrelli, P., Robinson, D.A., Fleischer, L.R., Lugato, E., Ballabio, C., Alewell, C., Meusburguer, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Van Oost, K., Montanarella, L., Panagos, P. 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature communications, 8(1), 2013. https://doi.org/10.1038/s41467-017-02142-7
Cover, M.L., Change, L.C. 1999. MODIS land cover product algorithm theoretical basis document (ATBD) version 5.0. MODIS documentation, 42-47.
Delgado, D., Quiroz, S., Casanova, G., Álava, M.A.C., da Silva, J.P.C. (2021a). Urban Mobility Characterization and Its Application in a Mobility Plan. Case Study: Bahía de Caráquez – Ecuador. In: da Costa Sanches Galvão, J.R., et al. Proceedings of the 1st International Conference on Water Energy Food and Sustainability (ICoWEFS 2021). ICoWEFS 2021. Springer, Cham. https://doi.org/10.1007/978-3-030-75315-3_64
Delgado, D., Sadaoui, M., Pacheco, H., Méndez, W., Ludwig, W. 2021b. Interrelations between soil erosion conditioning factors in basins of Ecuador: contributions to the spatial model construction. In International Conference on Water Energy Food and Sustainability (pp. 892- 903). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-75315-3_94
Delgado, D., Sadaoui, M., Ludwig, W., Méndez, W. 2022. Spatio-temporal assessment of rainfall erosivity in Ecuador based on RUSLE using satellitebased high frequency GPM-IMERG precipitation data. Catena, 219, 106597. https://doi.org/10.1016/j.catena.2022.106597
Delgado, D., Sadaoui, M., Ludwig, W., Mendez, W. 2023. Depth of the pedological profile as a conditioning factor of soil erodibility (RUSLE K-Factor) in Ecuadorian basins. Environmental Earth Sciences, 82(12), 286. https://doi.org/10.1007/s12665-023-10944-w
Desmet, P., Govers, G. 1996. A GIs procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Conservation, 51, 427–433.
Erazo, B., Bourrel, L., Frappart, F., Chimborazo, O., Labat, D., Dominguez-Granda, L., Matamoros, D. y Mejia, R. 2018. Validation of satellite estimates (Tropical Rainfall Measuring Mission, TRMM) for rainfall variability over the Pacific slope and Coast of Ecuador. Water, 10(2), 213. https://doi.org/10.3390/w10020213
Gallart, F., Marignani, M., Pérez-Gallego, N., Santi, E., Maccherini, S. 2013. Thirty years of studies on badlands, from physical to vegetational approaches. A succinct review. Catena, 106, 4–11. https://doi.org/10.1016/j.catena.2012.02.008
Gartner, J.E., Cannon, S.H., Santi, P.M. 2014. Empirical models for predicting volumes of sediment deposited by debris flows and sedimentladen floods in the transverse ranges of southern California. Engineering Geology, 176, 45–56. https://doi.org/10.1016/j.enggeo.2014.04.008
He, W., You, L., Chen, M., Tuo, Y., Liao, N., Wang, H., Li, J. 2023. Varied sediment archive of Fe and Mn contents under changing reservoir mixing patterns, oxygenation regimes, and runoff inputs. Ecological Indicators, 147, 109967. https://doi.org/10.1016/j.ecolind.2023.109967
Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Stocker, E.F., Tan, J. 2019. V06 IMERG release notes. NASA/GSFC: Greenbelt, MD, USA.
Kamel, D., Munoz, A.B., Ramon, S., Huete, A. 2015. MODIS Vegetation Index User’s Guide. Vegetation Index and Phenology Lab of The University of Arizona, The University of Arizona: Tucson, AZ,USA.
Keesstra, S.D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J., N., Pachepsky, Y., Van del Putten, W., Bardgett, R., Moolenaar, S., Mol, G., Jansen, B., Fresco, L.O. 2016. Forum paper: The significance of soils and soil science towards realization of the UN sustainable development goals (SDGS). Soil Discussions, 2016, 1–28. https://doi.org/10.5194/soil-2015-88
Knijjff, J.M.F., Jones, R.J.A., Montanarella, L. 1999. Soil erosion risk assessment in Italy. Brussels, Belgium: European Soil Bureau, European Commission.
Li, H., Guan, Q., Sun, Y., Wang, Q., Liang, L., Ma, Y., Du, Q. 2022. Spatiotemporal analysis of the quantitative attribution of soil water erosion in the upper reaches of the Yellow River Basin based on the RUSLE-TLSD model. Catena, 212, 106081. https://doi.org/10.1016/j.catena.2022.106081
Luters, J.C., Salazar, J.P. 1999. Guía para la evaluación de la calidad y salud del suelo. Buenos Aires: United States Department of Agriculture (p. 88). CRNCNIA- INTA.
Macías, L., Loor, D., Ortiz-Hernández, E., Casanova, G., Delgado, D. 2021. Comparative Analysis of Soil Slope Stability, Using Dynamic and Pseudostatic Methods on the Garrapata - Santa Maria Road, Manabi Province, Ecuador. In: da Costa Sanches Galvão, J.R., et al. Proceedings of the 1st International Conference on Water Energy Food and Sustainability (ICoWEFS 2021). ICoWEFS 2021. Springer, Cham. https://doi.org/10.1007/978-3-030-75315-3_55
Masroor, M., Sajjad, H., Rehman, S., Singh, R., Rahaman, M.H., Sahana, M., Ahmed, R., Avtar, R. 2022. Analysing the relationship between drought and soil erosion using vegetation health index and RUSLE models in Godavari middle subbasin, India. Geoscience Frontiers, 13(2), 101312. https://doi.org/10.1016/j.gsf.2021.101312
Mendoza, E.F.M., Arteaga, E.A.G., Delgado, D. 2023. La erosividad de la lluvia como factor condicionante de la erosión hídrica en Manabí. Polo del Conocimiento, 8(2), 68–81.
Molerio León, L.F. 2018. Gestión de recursos hidráulicos bajo riesgo de terremotos en Ecuador: 1. Sismotectónica. Ingeniería Hidráulica y Ambiental, 39(3), 3–17.
Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R. 2000. Erosion Soil and Water Assessment Tool Theoretical. Documentation Texas Agricultural Eksperiment Station, 625.
Ortiz, R., Zambrano, C., García-Vinces, J., Delgado, D. 2022. Análisis de los accidentes de tránsito en varios cantones del Ecuador. Revista de Investigaciones en Energía, Medio Ambiente y Tecnología: RIEMAT, 7(1). https://doi.org/10.33936/riemat.v7i1.4838
Pacheco, H.A., Méndez, W., Moro, A. 2019. Soil erosion risk zoning in the Ecuadorian coastal region using geo-technological tools. Earth Sciences Research Journal, 23(4), 293–302. https://doi.org/10.15446/esrj.v23n4.71706
Panagos, P., Ballabio, C., Borrelli, P., Meusburger, K., Klik, A., Rousseva, S., Perčec, M., Michaelides, S., Hrabalíková, M., Olsen, P., Aalto, J., Lakatos, M., Rymszewicz, A., Dumutrescu, A., Beguería, S., Alewell, C. 2015. Rainfall erosivity in Europe. Science of the Total Environment, 511, 801-814. https://doi.org/10.1016/j.scitotenv.2015.01.008
Polykretis, C., Alexakis, D.D., Grillakis, M.G., Manoudakis, S. 2020. Assessment of intra-annual and inter-annual variabilities of soil erosion in Crete Island (Greece) by incorporating the Dynamic “Nature” of R and C-Factors in RUSLE modeling. Remote Sensing, 12(15), 2439. https://doi.org/10.3390/rs12152439
Pourrut, P. 1994. L’eau en Equateur: principaux acquis en hydroclimatologie. ORSTOM éditions.
Ramos-Diez, I., Navarro-Hevia, J., Fernández, R.S.M., Díaz-Gutiérrez, V., Mongil-Manso, J. 2017. Evaluating methods to quantify sediment volumes trapped behind check dams, Saldaña badlands (Spain). International Journal of Sediment Research, 32(1), 1–11. https://doi.org/10.1016/j.ijsrc.2016.06.005
Räsänen, T.A., Tähtikarhu, M., Uusi-Kämppä, J., Piirainen, S., Turtola, E. 2023. Evaluation of RUSLE and spatial assessment of agricultural soil erosion in Finland. Geoderma Regional, 32, e00610. https://doi.org/10.1016/j.geodrs.2023.e00610
Renard, K.G. 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). US Department of Agriculture, Agricultural Research Service.
Rodríguez, M.A.V., Hernández, D.O.A. 2023. Evaluación de la vulnerabilidad a los efectos del cambio climático de las estructuras de drenaje en carreteras. Revista Ciencia y Construcción, 4(1), 37–47.
Salamanca, A., Sadeghian, S. 2006. La densidad aparente y su relación con otras propiedades en suelos de la zona cafetera colombiana.
Sarmiento, F.O., Rodríguez, J., Yepez-Noboa, A. 2021. Forest Transformation in the Wake of Colonization: The Quijos Andean Amazonian Flank, Past and Present. Forests, 13(1), 11. https://doi.org/10.3390/f13010011
Scott, K.M., Williams, R.P. 1978. Erosion and sediment yields in the Transverse Ranges, southern California (Vol. 1030). US Government Printing Office. https://doi.org/10.3133/pp1030
Sparovek, G., Schnug, E. 2001. Temporal erosioninduced soil degradation and yield loss. Soil Science Society of America Journal, 65(5), 1479–1486. https://doi.org/10.2136/sssaj2001.6551479x
Thomas, J., Joseph, S., Thrivikramji, K.P. 2018. Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS. Geoscience Frontiers, 9(3), 893–906. https://doi.org/10.1016/j.gsf.2017.05.011
Tian, P., Zhu, Z., Yue, Q., He, Y., Zhang, Z., Hao, F., Guo, W., Chen, L., Liu, M. 2021. Soil erosion assessment by RUSLE with improved P factor and its validation: Case study on mountainous and hilly areas of Hubei Province, China. International Soil and Water Conservation Research, 9(3), 433–444. https://doi.org/10.1016/j.iswcr.2021.04.007
USDA (Departamento de Agricultura de los Estados Unidos). 1999. Guía para la Evaluación de la Calidad y Salud del Suelo. Obtenido en línea el 15/07/2023. https://www.nrcs.usda.gov/sites/default/files/2022-10/Gu%C3%ADa%20para%20la%20Evaluaci%C3%B3n%20de%20la%20Calidad%20y%20Salud%20del%20Suelo.pdf
Valeriu, P.C. 2023. Applying RUSLE for soil erosion estimation in Romania under current and future climate scenarios. Geoderma Regional, e00687. https://doi.org/10.1016/j.geodrs.2023.e00687
Williams, J.R. 1995. Chapter 25. The EPIC Model. p. 909–1000. In Computer Models of Watershed Hydrology. Water Resources Publications. Highlands Ranch, CO.
Zambrano Mero, J.D., Delgado Párraga, A.G., Zambrano Mero, E.T., Peñaherrera Villafuerte, S.L. 2022. Contaminantes biológicos presentes en fuentes de agua del centro-sur de la provincia de Manabí, Ecuador. Siembra, 9(2), e4011. https://doi.org/10.29166/siembra.v9i2.4011
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Gema Casanova-Ruiz, Daniel Delgado, Ramona Panchana
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International