Mapping of the natural and anthropic environments of Entre Rios (Argentina) using machine learning classification
DOI:
https://doi.org/10.4995/raet.2024.20831Keywords:
land cover dynamics, Google Earth Engine, Sentinel-2, supervised classificationAbstract
Entre Ríos presents a distinctive landscape with numerous contrasting environments. Mapping both natural and anthropic features is a common task facilitated using remote sensing technologies alongside geographic information systems. Knowing what, how much, and where they are located is essential for designing sustainable use and conservation strategies for natural resources in a territory. The free accessibility of data and the cloud processing capability for all this information are crucial for processing and classifying the vegetation of a specific area. The aim was to create an updated map that can be easily updated in the future, using the same method for the most representative natural and anthropic environments in the province of Entre Ríos. This involves determining the best time of the year to maximize the accuracy percentage of automatic algorithm classification for each environment. Employing automatic classification learning algorithms was useful in understanding the extent of natural and anthropic ecosystems across a vast territory. Google Earth Engine tools allowed for selecting the optimal time of year to maximize accuracy percentage and minimize the probability of error with low computational and operational costs. The results obtained are indispensable for planning precise and accurate public policies for productive activities, as well as for the conservation of natural resources.
Downloads
References
Ariza, A. 2006. Análisis del retroceso de glaciales tropicales en los Andes Centrales de Colombia mediante imágenes Landsat. Revista Cartográfica, (82), 57+.
Astola, H., Seitsonen, L., Halme, E., Molinier, M., Lönnqvist, A. 2021. Deep Neural Networks with Transfer Learning for Forest Variable Estimation Using Sentinel-2 Imagery in Boreal Forest. Remote Sens., 13, 2392. https://doi.org/10.3390/rs13122392
Avogadro, E.G., Padró, J.C. 2019. Diferenciación de plantaciones forestales en Entre Ríos (Argentina): comparación de métodos de clasificación aplicados a imágenes Sentinel-2 y Landsat-8. GeoFocus, 24, 117-139. https://doi.org/10.21138/GF.652
Belgiu M., Dragut L. 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
Burry L.S, Palacio P.I., Somoza M., Trivi de Mandri M.E., Lindskoug H.B., Marconetto M.B., D'Antoni H. 2018. Dynamics of fire, precipitation, vegetation and NDVI in dry forest environments in NW Argentina. Contributions to environmental archaeology. Journal of Archaeological Science: Reports. 18, 747-757. https://doi.org/10.1016/j.jasrep.2017.05.019
Chen, S., Woodcock, C.E., Bullock, E.L., Arévalo, P., Torchinava, P., Peng, S., Olofsson, P., 2021. Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis. Rem. Sens. Environ. 265, 112648. https://doi.org/10.1016/j.rse.2021.112648
Coca-Castro, A., Zaraza-Aguilera, MA., Benavides-Miranda, YT., Montilla-Montilla, YM., Posada-Fandiño, HB., Avendaño-Gomez, AL., Hernández-Hamon, H.A., Garzón-Martínez, S.C., Franco-Prieto, C.A. 2021. Evaluación de algoritmos de clasificación en la plataforma Google Earth Engine para la identificación y detección de cambios de construcciones rurales y periurbanas a partir de imágenes de alta resolución. Revista de Teledetección, (58), 71-88. https://doi.org/10.4995/raet.2021.15026
Congalton, R.G., Green, K. 2019. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Third Edition (3rd ed.). CRC Press. https://doi.org/10.1201/9780429052729
Crossman, N.D., Burkhard, B., Nedkov, S., Willemen, L., Petz, K., Palomo, I., Drakou, E.G., Martín-López, B., McPhearson, T., Boyanova, K., Alkemade, R., Egoh, B., Dunbar, M.B., Maes, J. 2013. A blueprint for mapping and modelling ecosystem services. Ecosystem services, 4, 4-14. https://doi.org/10.1016/j.ecoser.2013.02.001
Dozier J. 1989. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sensing of Environment, 28: 9-22. https://doi.org/10.1016/0034-4257(89)90101-6
ESA, User Guides - Sentinel-2 MSI - Sentinel Online [WWW Document], URL https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/processing-levels (accessed 3.16.20)
Evans JS, Murphy MA, Holden ZA, Cushman SA. 2011. Modeling species distribution and change using random forest. In: Drew CA, Wiersma YF, Huettmann F, editors. Predictive species and habitat modeling in landscape ecology: concepts and applications. New York City, NY, USA: Springer Science+Business Media. pp. 139-159. https://doi.org/10.1007/978-1-4419-7390-0_8
Fang H., Jamali B., Deletic A., Zhang K. 2021. Machine learning approaches for predicting the performance of stormwater biofilters in heavy metal removal and risk mitigation. Water Research, 200: 117273. https://doi.org/10.1016/j.watres.2021.117273
Ghorbanian, A., Kakooei, M., Amani, M., Mahdavi, S., Mohammadzadeh, A., Hasanlou, M. 2020. Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples. ISPRS J. Photogramm. Remote Sens., 167, 276-288. https://doi.org/10.1016/j.isprsjprs.2020.07.013
Ghorbanian, A.; Zaghian, S.; Asiyabi, R.M.; Amani, M.; Mohammadzadeh, A.; Jamali, Mangrove S. 2021. Mangrove Ecosystem Mapping Using Sentinel-1 and Sentinel-2 Satellite Images and Random Forest Algorithm in Google Earth Engine. Remote Sens., 13, 2565. https://doi.org/10.3390/rs13132565
Goldblatt, R., Rivera Ballesteros, A., Burney, J. 2017. HighSpatial Resolution Visual Band Imagery Outperforms MediumResolution Spectral Imagery for Ecosystem Assessment in the Semi- Arid Brazilian Sertão. Remote Sens., 9, 1336. https://doi.org/10.3390/rs9121336
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R. 2017. Google earth engine: planetary-scale geospatial analysis for everyone. Rem. Sens. Environ., 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031
Grabska-Szwagrzyk, E., Tymińska-Czabańska, L. 2023. Sentinel-2 time series: a promising tool in monitoring temperate species spring phenology, Forestry: An International Journal of Forest Research. cpad039, https://doi.org/10.1093/forestry/cpad039
Hansen M.C., Potapov P.V., Moore R., Hancher M., Turubanova S.A., Tyukavina A., Thau D., Stehman S., Goetz S.J., Loveland T.R., Kommareddy A., Egorov A., Chini L., Justice C.O., Townshend J.R.G. 2013. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342, 6160. https://doi.org/10.1126/science.1244693
Hethcoat M.G., Edwards D.P., Carreiras J.M.B., Bryant R.G., França F.M., Quegan S. 2019. A machine learning approach to map tropical selective logging. Remote Sens. Environ., 221, 569-582. https://doi.org/10.1016/j.rse.2018.11.044
Jinxia, Y., Wu, J., Xiao, C., Zhang, Z., Li, J. 2022. The classification method study of crops remote sensing with deep learning, machine learning, and google earth engine. Rem. Sens., 14(12), 2758. https://doi.org/10.3390/rs14122758
Johansen K., Phinn S. 2006. Mapping Structural Parameters and Species Composition of Riparian Vegetation Using IKONOS and Landsat ETM Data in Australian Tropical Savannahs. Photogrammetric Engineering & Remote Sensing. 72(1), 71-80. https://doi.org/10.14358/PERS.72.1.71
Jozami J.M., Muñoz J.D. 1982. Árboles y arbustos indígenas de la Prov. de Entre Ríos. IPNAYS CONICET-UNL. Santa Fe, 407 pp.
Li, A., Dhakal, S., Glenn, N.F., Spaete, L.P., Shinneman, D.J., Pilliod, D.S., Arkle, R.S., Mcllroy, S.K. 2017. Lidar Aboveground vegetation biomass estimates in Shrublands: prediction, uncertainties and application to coarser scales. Remote Sensing., 9(9), 903. https://doi.org/10.3390/rs9090903
Lin, F.C., Chou, T.Y., Ku, W.Y., Chung, L.K., Wang, C.J. 2018. Storage and processing of massive remote sensing images using a novel cloud computing platform. GIScience Remote Sens., 50(3), 322-336. https://doi.org/10.1080/15481603.2013.810976
Liu, X., Fatoyinbo, T.E., Thomas, N.M., Guan, W.W., Zhan, Y., Mondal, P., Lagomasino, D., Simard, M., Trettin, C.C., Deo, R., Barenblitt, A. 2021. Largescale High-resolution Coastal Mangrove Forests Mapping across West Africa with Machine Learning Ensemble and Satellite Big Data. Front. Earth Sci., 8, 677. https://doi.org/10.3389/feart.2020.560933
Luo, C., Zhang, X., Meng, X., Zhu, H., Ni, C., Chen, M., Liu, H. 2022. Regional mapping of soil organic matter content using multitemporal synthetic Landsat 8 images in Google Earth Engine. Catena, 209(1), 105842. https://doi.org/10.1016/j.catena.2021.105842
Madonsela, S., Cho, M.A., Mathieu, R., Mutanga, O., Ramoelo, A., Kaszta, Ż., Van De Kerchove, R., Wolff, E. 2017. Multi-phenology WorldView-2 imagery improves remote sensing of savannah tree species. Int. J. Appl. Earth Obs. Geoinf., 58, 65-73. https://doi.org/10.1016/j.jag.2017.01.018
Magidi, J., Nhamo, L., Mpandeli, S., Mabhaudhi, T., 2021. Application of the random forest classifier to map irrigated areas using google earth engine. Rem. Sens., 13(5), 1-15. https://doi.org/10.3390/rs13050876
Mahdianpari, M., Jafarzadeh, H., Granger, J.E., Mohammadimanesh, F., Brisco, B., Salehi, B., Homayouni, S., Weng, Q. 2020. A large-scale change monitoring of wetlands using time series Landsat imagery on Google Earth Engine: a case study in Newfoundland. GIScience & Remote Sensing, 57(8), 1102-1124. https://doi.org/10.1080/15481603.2020.1846948
Montaño, R.A.N.R., Sanquetta, C.R., Wojciechowski, J., Mattar, E., Corte, A.P.D., Todt, E. 2017. Artificial Intelligence Models to Estimate Biomass of Tropical Forest Trees. Polibits, 56, 29-37.
Morell-Monzó, S., Sebastiá-Frasquet, M.T., Estornell, J. 2021. Land Use Classification of VHR Images for Mapping Small-Sized Abandoned Citrus Plots by Using Spectral and Textural Information. Remote Sens., 13, 681. https://doi.org/10.3390/rs13040681
Muñoz J., Milera S., Romero C., Brizuela A. 2005. Bosques nativos y selvas ribereñas en la Provincia de Entre Ríos. INSUGEO Miscelánea 14, 169-182. Tucumán. Argentina.
Naboureh, A., Li, A., Bian, J., Lei, G., Amani, M. A Hybrid Data Balancing Method for Classification of Imbalanced Training Data within Google Earth Engine: Case Studies from Mountainous Regions. Remote Sens., 12, 3301. https://doi.org/10.3390/rs12203301
Nascimento, J.L., Campos, I.B. 2011. Atlas da fauna brasileira ameaçada de extinção em unidades de conservação federais. ICMBIO. Brasília, 276 pp.
Oszust, J.D., Wilson, M.G., Wingeyer, A.B, Seehus, M.S., Sasal, M.C., Gabioud, E.A., van Opstal, N.V. 2019. Régimen de precipitaciones en el Centro Oeste de Entre Ríos. Revista Científica Agropecuaria, 23(1): 27-34.
Oyarzabal, M., Clavijo, J., Oakley, L., Biganzoli, F., Tognetti, P., Barberis, I., Maturo, H.M., Aragón, R., Campanello, P.I., Prado, D., Oesterheld, M., & León, R.J. 2018. Unidades de vegetación de la Argentina. Ecología Austral, 28(1), 040-063. https://doi.org/10.25260/EA.18.28.1.0.399
Paruelo, J.M., Jobbágy, E.G., Laterra, P. 2014. Bases conceptuales del ordenamiento territorial rural. En: Paruelo, J.M., Jobbágy, E.G., Laterra, P., Dieguez, H., García-Collazo, M.A., Panizza, A. (Eds.), Ordenamiento Territorial Rural. Conceptos, métodos y experiencias, pp. 10-31. Universidad de Buenos Aires, Ministerio de Agricultura, Ganadería y Pesca, Organización de las Naciones Unidas para la Alimentación y la Agricultura. Buenos Aires, Argentina.
Pérez-Cutillas, P., Pérez-Navarro, A., Conesa-García, C, Zema, D.A., Amado-Álvarez, J.P. 2023. What is going on within google earth engine? A systematic review and meta-analysis. Remote Sensing Applications: Society and Environment, 29, 100907. https://doi.org/10.1016/j.rsase.2022.100907
Plan Mapa de Suelos Provincia de Entre Ríos. 1980. Suelos y erosión de la Provincia de Entre Ríos. Tomo 1. INTA EEA Paraná, Serie Relevamiento de Recursos Naturales. Proyecto PNUD/FAO/ INTA Arg 68/526. 109 pp
Rodríguez-Galiano, V.F, Ghimire, B., Rogan, J., Chica- Olmo, M., Rigol-Sánchez, J.P. 2012. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93-104. https://doi.org/10.1016/j.isprsjprs.2011.11.002
Sabattini, R.A., Wilson, M.G., Muzzachiodi, N., Dorsch, A.F. 1999. Guía para la caracterización de agroecosistemas del centro-norte de Entre Ríos. Revista Científica Agropecuaria, 3, 7-19.
Sabattini, R.A., Sione, S., Ledesma, S.G., Muracciole, B., Cottani, F., Fortini, C. 2008. Análisis de la diversidad florística y de los tipos productivos del pastizal natural en un monte nativo bajo pastoreo rotativo (Entre Ríos, Argentina). Revista Científica Agropecuaria, 12(1), 5-13.
Sabattini, R.A., Ledesma, S., Brizuela, A., Sabattini, J.A., Diez, J.M. 2010. Metodología y Criterios para el ordenamiento territorial de bosques nativos de Entre Ríos. En: III Jornadas RedVITEC, 25-26 noviembre 2010, Mendoza, Argentina. Mendoza: IMD. 14 pp.
Sabattini, J.A., Sabattini, R.A., Ledesma, S. 2015. Caracterización del bosque nativo del centro norte de Entre Ríos (Argentina). Agrociencia Uruguay, 19(2), 8-16. https://doi.org/10.31285/AGRO.19.296
Seidlova, A., Kudelcikova, M., Mihalik, J.; Rekus, D. 2021. Interpretation of Remote Sensing Imagery. IOP Conf. Series: Earth and Environmental Science 906. IOP Publishing. https://doi.org/10.1088/1755-1315/906/1/012070
Sharma, L.K., Gupta, R., Fatima, N. 2022. Assessing the predictive efficacy of six machine learning algorithms for the susceptibility of Indian forests to fire. International Journal of Wildland Fire., 31(8), 735-758. https://doi.org/10.1071/WF22016
Shetty, S., Gupta, P.K., Belgiu, M., Srivastav, S.K. 2021. Assessing the effect of training sampling design on the performance of machine learning classifiers for land cover mapping using multi-temporal remote sensing data and google earth engine. Rem. Sens. 13(8), 1433. https://doi.org/10.3390/rs13081433
Singha, M., Dong, J., Sarmah, S., You, N., Zhou, Y., Zhang, G., Doughty, R., Xiao, X. 2020. Identifying floods and flood-affected paddy rice fields in Bangladesh based on Sentinel-1 imagery and Google Earth Engine. ISPRS J. Photogrammetry Remote Sens. 166, 278-293. https://doi.org/10.1016/j.isprsjprs.2020.06.011
Stromann, O., Nascetti, A., Yousif, O., Ban, Y. 2020. Dimensionality reduction and feature selection for object-based land cover classification based on sentinel-1 and sentinel-2 time series using google earth engine. Rem. Sens., 12(1), 76. https://doi.org/10.3390/rs12010076
Suryono, H., Kuswanto, H., Iriawan, N. 2022. Rice phenology classification based on random forest algorithm for data imbalance using Google Earth engine. Procedia Computer Science, 197, 668-676. https://doi.org/10.1016/j.procs.2021.12.201
Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., Brisco, B. 2020. Google Earth Engine for geo-big data applications: a meta-analysis and systematic review. ISPRS J. Photogrammetry Remote Sens. 164, 152-170. https://doi.org/10.1016/j.isprsjprs.2020.04.001
Townsend, J.T. 1971. Theoretical analysis of an alphabetic confusion matrix. Percept. Psychophys. 9(1), 40-50. https://doi.org/10.3758/BF03213026
Tran, K.H., Zhang, H.K., McMaine, J.T., Zhang, X., Luo, D. 2022. 10 m crop type mapping using Sentinel-2 reflectance and 30 m cropland data layer product. International Journal of Applied Earth Observation and Geoinformation, 107, 102692. https://doi.org/10.1016/j.jag.2022.102692
Viña, A., Liu, W., Zhou, S., Huang, J., Liu, J. 2016. Land surface phenology as an indicator of biodiversity patterns. Ecological Indicators, 64: 281-288. https://doi.org/10.1016/j.ecolind.2016.01.007
Zerda, H.R., Tiedemann, J.L. 2010. Dinámica temporal del NDVI del bosque y pastizal natural en el Chaco Seco de la Provincia de Santiago del Estero, Argentina. Ambiência Guarapuava, 6(1), 13-24. https://doi.org/10.5777/1808-02512010000300001
Zhao, Y., Zhu, W., Wei, P., Fang, P., Zhang, X., Yan, N., Liu, W., Zhao, H., Wu, Q. 2022. Classification of Zambian grasslands using random forest feature importance selection during the optimal phenological period. Ecological Indicators, 135, 108529. https://doi.org/10.1016/j.ecolind.2021.108529
Zhao, X., Xia, H., Pan, L., Song, H., Niu, W., Wang, R., Li, R., Bian, X., Guo, Y., Qin, Y. 2021. Drought monitoring over Yellow river basin from 2003-2019 using reconstructed MODIS land surface temperature in google earth engine. Remote Sens., 13, 3748. https://doi.org/10.3390/rs13183748
Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2024 Julian Alberto Sabattini, Rafael Alberto Sabattini, Norberto Muzzachiodi, Irina Treisse, Rodrigo Penco
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
Funding data
-
Universidad Nacional de Entre Ríos
Grant numbers PID UNER N°2238