Quantitative analysis of subsidence in the Southwestern Sabana de Bogotá using InSAR geodesy

|

Accepted: 2024-10-07

|

Published: 2024-10-21

DOI: https://doi.org/10.4995/raet.2025.21345
Funding Data

Downloads

Keywords:

subsidence, InSAR, Sabana de Bogotá, geodesy

Supporting agencies:

This research was not funded

Abstract:

Subsidence is a geological phenomenon that consists of the gradual sinking of the earth’s surface, which can be caused by natural actions or by human activity. The Satellite Applications Group for the Study of Earth Dynamics (ASEDT) of the Geohazards Directorate of the Colombian Geological Survey, under the framework of the GeoRED project (Geodesy: Deformation Studies Network), using InSAR (Interferometric Synthetic Aperture Radar) geodesy techniques, has quantified the phenomenon of subsidence in 13 municipalities that are part of the Sabana de Bogotá, using Sentinel-1 interferometric images (184 of descending orbit and 225 of ascending orbit), for the period from October 2014 to December 2021. A total of 840 interferograms were generated, of which 345 correspond to ascending orbits and 495 to descending orbits, which allowed estimating the values of the movements along the line-of-sight (LOS) for each set of images, and subsequently using combination techniques the vertical and horizontal east-west velocities were estimated. One of the municipalities with the greatest subsidence in the study area is El Rosal, where a vertical displacement rate of up to 12 cm/year is estimated, i.e. a value approximately four times higher than the estimate made by Mora-Páez et al. (2021) in the city of Bogotá.

Show more Show less

References:

Berardino, P., Fornaro, G., Lanari, R., Sansosti, E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375–2383. https://doi.org/10.1109/TGRS.2002.803792

Chen, C. 2001. Statistical-cost network-flow approaches to two-dimensional phase unwrapping for radar interferometry. PhD Thesis, Stanford University, 159 p.

Fattahi, H., Agram, P., Simons, M. 2017. A Network-Based Enhanced Spectral Diversity Approach for TOPS Time-Series Analysis. IEEE Transactions on Geoscience and Remote Sensing, 55(2), 777–786. https://doi.org/10.1109/TGRS.2016.2614925

Ferretti, A., Andrea, M.G., Prati, C., Rocca Fabio. 2007. InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation, TM-19, European Space Agency, The Netherlands, 250 p.

IDECA. 2013. Datos abiertos Bogotá. https://datosabiertos.bogota.gov.co/

Jolivet, R., Grandin, R., Lasserre, C., Doin, M.P., Peltzer, G. 2011. Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. Geophysical Research Letters, 38(17). https://doi.org/10.1029/2011GL048757

Lobo-Guerrero, U.A. 1992. Geología e Hidrogeología de Santafé de Bogotá y su Sabana, VII Jornadas Geotécnicas de la Ingeniería en Colombia, Sociedad Colombiana de Ingenieros-Sociedad Colombiana de Geotécnica, Bogotá, 20 p.

Lobo-Guerrero, U.A. 2003. Effects of aquifer overexploitation on the surface infrastructure in the Bogotá Sabana (Colombia). RMZ Materials and Geoenvironment 50, 193–196.

Montoya, D.M., Reyes, G.A. 2007. Geología de la sabana de Bogotá, Publicaciones Especiales de Ingeominas No. 28, 103 p. https://www2.sgc.gov.co/biblioteca/Documents/Biblioteca/Geologia de lasabana de bogota.pdf

Mora-Páez, Héctor, Díaz-Mila, F., Cardona, L. 2020. Mapping land subsidence in Bogotá, Colombia, using the interferometric synthetic aperture radar (InSAR) technique with TerraSAR-X images. Quaternary. Servicio Geológico Colombiano, 4, 515–548. https://doi.org/10.32685/pub.esp.38.2019.16

Mora-Páez, Héctor, Díaz-Mila, F., Sagiya, T., Londoño, L.G., Corchuelo Cuervo, Y. 2021. Contribución de la geodesia espacial en la gestión del riesgo en Colombia. Casos de estudio. En UNGRD (Ed.), Investigaciones en gestión del riesgo de desastres para Colombia. Avances, perspectivas y casos de estudio. Unidad Nacional para la Gestión del Riesgo de Desastres. https://online.pubhtml5.com/pxou/mckv/index.html#p=26

Portafolio. 2022. Sector floricultor repuntó, pese a la pandemia. Finanzas. portafolio.co/economia/finanzas/sector-floricultor-repunto-pese-a-lapandemia-564938

Pritchard, M.E. 2006. InSAR, a tool for measuring Earth’s surface deformation. Physics Today 59(7), 68-69. https://doi.org/10.1063/1.2337843

Rosen, P.A., Gurrola, E., Sacco, G.F., y Zebker, H. 2012. The InSAR scientific computing environment. EUSAR 2012; 9th European Conference on Synthetic Aperture Radar, 730–733.

Rudenko, S., Sch, N. 2013. Reprocessed height time series for GPS stations. 2008, 23–41. https://doi.org/10.5194/se-4-23-2013

Van der Hammen, T., Werner, J.H., y van Dommelen, H. 1973. Palynological record of the upheaval of the Northern Andes: A study of the pliocene and lower quaternary of the Colombian Eastern Cordillera and the early evolution of its high-Andean biota. Review of Palaeobotany and Palynology, 16(1–2), 1–42. https://doi.org/10.1016/0034-6667(73)90031-6

Wijninga, V.M. 1996. Paleobotany and Palynology of Neogene sediments from the High Plain of Bogota (Colombia). Evolution of the Andean flora from a paleoecological perspective. En Amsterdam: Elsevier Science Publishers (p. 370). https://hdl.handle.net/11245/1.120063

Yunjun, Z., Fattahi, H., y Amelung, F. 2019. Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Computers and Geosciences, 133. https://doi.org/10.1016/J.CAGEO.2019.104331

Show more Show less