Spatiotemporal variation of glacier dynamics and its relationship with changes in high mountain ecosystems in the Cordillera Blanca, Peru
Submitted: 2024-08-06
|Accepted: 2025-02-24
|Published: 2025-06-04
Copyright (c) 2025 Francisco Castillo-Vergara, Edwin Loarte, Katy Medina, Sofia Rodriguez-Venturo, Eladio Tuya

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Downloads
Keywords:
glacier dynamics, lakes, wetlands, high mountain, multitemporal analysis, Cordillera Blanca
Supporting agencies:
CONCYTEC through the PROCIENCIA program within the framework of the “Basic Research Projects 2024-03” competition, under contract [PE501088551-2024-PROCIENCIA], project “Analysis of chronosequences of glacier retreat areas and their relationship with the emergence of terrestrial and aquatic ecosystems in Cordillera Blanca, Peru (CronoEco-Glaciar)”
Abstract:
In high mountain ecosystems, glaciers, lakes and wetlands play an important role in local water resources, where a variation in glacier dynamics can affect the rest of the ecosystem components due to their hydrological connections. The objective of the study was to analyze the relationship of glacier dynamics with lakes and wetlands in Llullan, Quillcay and Yanayacu catchments of Cordillera Blanca (Peru) in the period from 1989 to 2019. Using Geographic Information Systems (GIS) and remote sensing, a multitemporal analysis was carried out using Landsat satellite images, and subsequently linear correlation was calculated and a Principal Component Analysis (PCA) was applied. The results of glacier dynamics parameters indicated a loss of between 22 and 56% of glacier area; from 24 and 63% of glacier volume; glacier front retreat varied between 10 and 18 m yr-1; and Equilibrium Line Altitude (ELA) rose from 137 and 227 m. The lake dynamics evidenced growth between 5 and 82% of their area and between 2 and 151% of their volume; and permanent wetlands showed a tendency to increase over time (from 44 and 289%). PCA indicated that PC1 and PC2 explained between 71 and 91% of the total variance of the original 7 variables, and glacier dynamics were found to have a good-very good inverse correlation with lake dynamics (between 0.62 and 0.99) and good with wetland dynamics (from 0.64 and 0.69). The study reflected the interconnectivity of high mountain ecosystem elements, where an acceleration of glacier retreat would trigger lakes and wetlands to reach their maximum capacity in shorter periods and begin to retreat earlier than expected.
References:
Adler, C., Huggel, C., Orlove, B., and Nolin, A. (2019). Climate change in the mountain cryosphere: impacts and responses. Regional Environmental Change, 19(5), 1225-1228. https://doi.org/10.1007/s10113-019-01507-6
Aponte-Saravia, J., and Ospina-Noreña, J. E. (2019). Evaluando el desempeño de índices espectrales para identificar humedales alto andinos. Revista de Teledetección, 53, 59-72. https://doi.org/10.4995/raet.2019.10580
Aponte, J. (2018). Dinamica de Cambios Superficiales en Humedales Cordillera La Viuda-Perú, mediante indices espectrales y modelo digital de elevacion, periodo 1985-2016. Universidad Nacional de Colombia.
Armstrong, R. L., Rittger, K., Brodzik, M. J., Racoviteanu, A., Barrett, A. P., Khalsa, S. J. S., Raup, B., Hill, A. F., Khan, A. L., Wilson, A. M., Kayastha, R. B., Fetterer, F., and Armstrong, B. (2018). Runoff from glacier ice and seasonal snow in High Asia: separating melt water sources in river flow. Regional Environmental Change, 19(5), 1249-1261. https://doi.org/10.1007/s10113-018-1429-0
Baraer, M., Mark, B. G., Mckenzie, J. M., Condom, T., Bury, J., Huh, K. I., Portocarrero, C., Gómez, J., and Rathay, S. (2012). Glacier recession and water resources in Peru's Cordillera Blanca. Journal of Glaciology, 58(207), 134-150. https://doi.org/10.3189/2012JoG11J186
Benn, D. I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L. I., Quincey, D., Thompson, S., Toumi, R., and Wiseman, S. (2012). Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Science Reviews, 114(1-2), 156-174. https://doi.org/10.1016/j.earscirev.2012.03.008
Bernex, N., and Tejada, M. (2010). Cambio climático, retroceso glaciar y gestión integrada de los recursos hídricos.
Buitrón, C., and Fernández, J. (2012). Estudio espacial multitemporal de variaciones en superficie observadas a través de imágenes satelitales Landsat en una región del parque nacional Sajama Bolivia.
Carey, M., French, A., and O'Brien, E. (2012). Unintended effects of technology on climate change adaptation: An historical analysis of water conflicts below Andean Glaciers. Journal of Historical Geography, 38(2), 181-191. https://doi.org/10.1016/j.jhg.2011.12.002
Carey, M., Molden, O. C., Rasmussen, M. B., Jackson, M., Nolin, A. W., and Mark, B. G. (2017). Impacts of Glacier Recession and Declining Meltwater on Mountain Societies. Annals of the American Association of Geographers, 107(2), 1-10. https://doi.org/10.1080/24694452.2016.1243039
Cerna, M. (2012). Cuantificacion del cambio de volumen de los glaciares de la Cordillera Blanca utilizando los modelos de elevacion digital topograficos y de imagenes ASTER: Nevados Champara y Huascaran. Universidad Nacional Mayor de San Marcos.
Cochi, N., Prieto, G., Dangles, O., Rojas, A., Ayala, C., Condori, B., and Casazola, J. L. (2014). Metodología para evaluar el potencial productivo y la dinámica socioecológica de la ganadería en bofedales altoandinos. Ecología En Bolivia, 49(3), 120-131.
Cuadros, B. (2014). Evolución De La Cobertura Glaciar Del Nevado Ananea entre 1985-2010. Revista Científica Investigación Andina, 14(2), 57-67.
Denzinger, F., Machguth, H., Barandun, M., Berthier, E., Girod, L., Kronenberg, M., Usubaliev, R., and Hoelzle, M. (2021). Geodetic mass balance of Abramov Glacier from 1975 to 2015. Journal of Glaciology, 67(262), 331-342. https://doi.org/10.1017/jog.2020.108
Emmer, A., Harrison, S., Mergili, M., Allen, S., Frey, H., and Huggel, C. (2020). 70 years of lake evolution and glacial lake outburst floods in the Cordillera Blanca (Peru) and implications for the future. Geomorphology, 365(107178), 1-11. https://doi.org/10.1016/j.geomorph.2020.107178
Emmer, A., Vilímek, V., Klimeš, J., and Cochachin, A. (2014). Glacier Retreat, Lakes Development and Associated Natural Hazards in Cordilera Blanca, Peru. Environmental Science and Engineering, 231-252. https://doi.org/10.1007/978-3-319-00867-7
Engdahl, N. B., and Maxwell, R. M. (2015). Quantifying changes in age distributions and the hydrologic balance of a high-mountain watershed from climate induced variations in recharge. Journal of Hydrology, 522, 152-162. https://doi.org/10.1016/j.jhydrol.2014.12.032
Finessi, F., and Cogliati, M. (2019). Estudio de las áreas de vegetación en el norte de la provincia de Neuquén con teledetección. 14° Encuentro Del Centro Internacional de Ciencias de La Tierra.
Francou, B. (2013). El rápido retroceso de los glaciares en los Andes tropicales: Un desafío para el estudio de la dinámica de los ecosistemas de alta montaña. Ecología En Bolivia, 48(2), 69-71.
Francou, B., and Wagnon, P. (1998). Cordilléres andines, sur les hauts sommets de Bolivie, du Pérou et d'Equateur. Glénat.
Garcia, E., and Otto, M. (2015). Caracterización Ecohidrológica De Humedales Alto Andinos Usando Imágenes De Satélite Multitemporales En La Cabecera De Cuenca Del Río Santa, Ancash, Perú. Ecología Aplicada, 14(2), 115-125. https://doi.org/10.21704/rea.v14i1-2.88
Garg, P. K., Shukla, A., and Jasrotia, A. S. (2019). On the strongly imbalanced state of glaciers in the Sikkim, eastern Himalaya, India. Science of the Total Environment, 691, 16-35. https://doi.org/10.1016/j.scitotenv.2019.07.086
Hall, D., Bayr, K., Schöner, W., Bindschadler, R., and Chien, J. (2003). Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space (1893-2001). Remote Sensing of Environment, 86(4), 566-577. https://doi.org/10.1016/S0034-4257(03)00134-2
Hall, D., Riggs, G., and Salomonson, V. (1995). Development of Methods for Mapping Global Snow Cover Using Moderate Resolution Imaging Spectroradiometer Data. Remote Sensing of Environment, 54, 127-140. https://doi.org/10.1016/0034-4257(95)00137-P
Hanshaw, M. N., and Bookhagen, B. (2014). Glacial areas, lake areas, and snow lines from 1975 to 2012: Status of the cordillera vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru. The Cryosphere, 8(2), 359-376. https://doi.org/10.5194/tc-8-359-2014
Hidrandina SA. (1989). Inventario de glaciares del Perú. Unidad de Glaciología e Hidrología.
Huggel, C., Kääb, A., Haeberli, W., Teysseire, P., and Paul, F. (2002). Remote sensing based assessment of hazards from glacier lake outbursts: A case study in the Swiss Alps. Canadian Geotechnical Journal, 39(2), 316-330. https://doi.org/10.1139/t01-099
IDEAM. (2012). Glaciares de Colombia más que montañas con hielo. Instituto de Hidrología, Meteorología y Estudios Ambientales.
INAIGEM. (2017). Manual metodológico de inventario nacional de glaciares. Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña.
INAIGEM. (2018). Inventario nacional de glaciares: las Cordilleras Glaciares del Perú. Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña.
INAIGEM. (2019). Informe de la Situación de los Glaciares y Ecosistemas de Montaña 2018.
INAIGEM. (2021). Inventario de lagunas y glaciares del Perú 2016. Geoportal INAIGEM. https://www.arcgis.com/apps/webappviewer/index.html?id=5379ac94516a4cb0a7f1cd0fa7bfc94b
INAIGEM. (2023). Memoria descriptiva del Inventario Nacional de Glaciares y Lagunas de Origen Glaciar del Perú. Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña (INAIGEM).
Ji, L., Zhang, L., Wylie, B. (2009). Analysis of dynamic thresholds for the Normalized Difference Water Index. Photogrammetric Engineering & Remote Sensing, 75(11), 1307-1317. https://doi.org/10.14358/PERS.75.11.1307
Kapitsa, V., Shahgedanova, M., Machguth, H., Severskiy, I., and Medeu, A. (2017). Assessment of Evolution of Mountain Lakes and Risks of Glacier Lake Outbursts in the Djungarskiy (Jetysu) Alatau, Central Asia, using Landsat Imagery and Glacier Bed Topography Modelling. Natural Hazards and Earth System Sciences Discussions, May, 1-54. https://doi.org/10.5194/nhess-2017-134
Linsbauer, A., Paul, F., and Haeberli, W. (2012). Modeling glacier thickness distribution and bed topography over entire mountain ranges with glabtop: Application of a fast and robust approach. Journal of Geophysical Research: Earth Surface, 117(3), 1-17. https://doi.org/10.1029/2011JF002313
Linsbauer, A., Paul, F., Hoelzle, M., Frey, H., and Haeberli, W. (2009). The Swiss Alps without glaciers - a GIS-based modelling approach for reconstruction of glacier beds. Proceedings of Geomorphometry, 243-247. https://doi.org/10.5167/uzh-27834
Loarte, E. (2011). Determinación de la variación espacio-temporal de la Línea de Equilibrio (ELA) a través la Línea de Nieve (SLA) de los glaciares de la Cordillera Blanca, durante el periodo 2001-2010. Universidad Nacional Santiago Antúnez de Mayolo.
Loarte, E., Rabatel, A., and Gomez, J. (2015). Determinación de la variación espacio-temporal de la altura de la línea de equilibrio de los glaciares de la Cordillera Blanca, Perú. Revista Peruana Geo-Atmosférica RPGA, 4, 19-30.
Loriaux, T., and Casassa, G. (2013). Evolution of glacial lakes from the Northern Patagonia Icefield and terrestrial water storage in a sea-level rise context. Global and Planetary Change, 102, 33-40. https://doi.org/10.1016/j.gloplacha.2012.12.012
Lorini, H. (2014). Estrategia de adaptación al cambio climático para humedales altoandinos.
Mark, B. G., and Mckenzie, J. M. (2007). Tracing increasing tropical Andean glacier melt with stable isotopes in water. Environmental Science and Technology, 41(20), 6955-6960. https://doi.org/10.1021/es071099d
Mark, B. G., McKenzie, J. M., and Gómez, J. (2005). Hydrochemical evaluation of changing glacier meltwater contribution to stream discharge: Callejon de Huaylas, Peru. Hydrological Sciences Journal, 50(6), 975-988. https://doi.org/10.1623/hysj.2005.50.6.975
Mark, B. G., and Seltzer, G. O. (2003). Tropical glacier meltwater contribution to stream discharge: A case study in the Cordillera Blanca, Peru. Journal of Glaciology, 49(165), 271-281. https://doi.org/10.3189/172756503781830746
Marzeion, B., Cogley, J. G., Richter, K., and Parkes, D. (2014). Attribution of global glacier mass loss to anthropogenic and natural causes. Science, 345, 919-921. https://doi.org/10.1126/science.1254702
McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432. https://doi.org/10.1080/01431169608948714
Muñoz, R., Huggel, C., Frey, H., Cochachin, A., and Haeberli, W. (2020). Glacial lake depth and volume estimation based on a large bathymetric dataset from the Cordillera Blanca, Peru. Earth Surface Processes and Landforms, 45(7), 1510-1527. https://doi.org/10.1002/esp.4826
Osmaston, H. (2005). Estimates of glacier equilibrium line altitudes by the Area × Altitude, the Area × Altitude Balance Ratio and the Area × Altitude Balance Index methods and their validation. Quaternary International, 138-139, 22-31. https://doi.org/10.1016/j.quaint.2005.02.004
Paul, F., and Linsbauer, A. (2012). Modeling of glacier bed topography from glacier outlines, central branch lines, and a DEM. International Journal of Geographical Information Science, 26(7), 1173-1190. https://doi.org/10.1080/13658816.2011.627859
Pieczonka, T., Bolch, T., Kröhnert, M., Peters, J., and Liu, S. (2018). Glacier branch lines and glacier ice thickness estimation for debris-covered glaciers in the Central Tien Shan. Journal of Glaciology, 64(247), 835-849. https://doi.org/10.1017/jog.2018.75
Polk, M. H., Young, K. R., Baraer, M., Mark, B. G., McKenzie, J. M., Bury, J., and Carey, M. (2017). Exploring hydrologic connections between tropical mountain wetlands and glacier recession in Peru's Cordillera Blanca. Applied Geography, 78, 94-103. https://doi.org/10.1016/j.apgeog.2016.11.004
Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., and Sorooshian, S. (1994). A Modified Soil Adjusted Vegetation Index. Remote Sensing of Environment, 48(2), 119-126. https://doi.org/10.1016/0034-4257(94)90134-1
Rabatel, A., Bermejo, A., Loarte, E., Soruco, A., Gomez, J., Leonardini, G., Vincent, C., and Sicart, J. E. (2012). Can the snowline be used as an indicator of the equilibrium line and mass balance for glaciers in the outer tropics? Journal of Glaciology, 58(212), 1027-1036. https://doi.org/10.3189/2012JoG12J027
Racoviteanu, A. E., Arnaud, Y., Williams, M., and Ordoñez, J. (2008). Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing. Journal of Glaciology, 54(186), 499-510. https://doi.org/10.3189/002214308785836922
Rios, R. (2020). Delimitación de Ecosistemas de Montaña usando Árbol de decisiones con datos de sensores remotos. https://www.inaigem.gob.pe/wp-content/uploads/2020/02/ViernesCientificoRRR_blanco.pdf
Rios, R. (2024). Metodología para el mapeamiento detallado de ecosistemas de montaña en el Parque Nacional Huascarán [Universidad Nacional Agraria La Molina]. In Universidad Nacional Agraria La Molina. https://repositorio.concytec.gob.pe/bitstream/20.500.12390/187/3/2017_Puicon_Evaluacion-resistencia-natural.pdf
Rios, R., Fuentealba, B. (2020). Árbol de decisiones para delimitación de ecosistemas de montaña en la U.H. Pariac - Rajucolta, aplicando teledetección
Rojas, J., and Tordocillo, J. (2018). Estimación del Área de la Superficie y el Cambio de Volumen del Glaciar del Nevado Champará (Cordillera Blanca, Perú) a partir de las Imágenes y los Modelos de Elevación Digital del Sensor ASTER / Terra (2000-2010). Revista de Glaciares y Ecosistemas de Montaña, 4, 23-42. https://doi.org/10.36580/rgem.i4.23-42
Santiago, F., Mallqui, H., Rios, R. (2021). Mapeo de la cobertura vegetal en la subcuenca Quillcay (Ancash, Perú) con el clasificador de Árbol de decisiones. Aporte Santiaguino, 14(1), 78–91. https://doi.org/10.32911/as.2021.v14.n1.761
Schauwecker, S., Rohrer, M., Huggel, C., Endries, J., Montoya, N., Neukom, R., Perry, B., Salzmann, N., Schwarb, M., and Suarez, W. (2017). The freezing level in the tropical Andes, Peru: An indicator for present and future glacier extents. Journal of Geophysical Research, 122(10), 5172-5189. https://doi.org/10.1002/2016JD025943
Seehaus, T., Malz, P., Sommer, C., Lippl, S., Cochachin, A., and Braun, M. (2019). Changes of the tropical glaciers throughout Peru between 2000 and 2016 - Mass balance and area fluctuations. The Cryosphere, 13(10), 2537-2556. https://doi.org/10.5194/tc-13-2537-2019
Seltzer, G. O. (1993). Late-Quaternary Glaciation Andes for Climate Central Change. Mountain Research and Development, 13(2), 129-138. https://doi.org/10.2307/3673630
Silverio, W., and Jaquet, J. M. (2005). Glacial cover mapping (1987-1996) of the Cordillera Blanca (Peru) using satellite imagery. Remote Sensing of Environment, 95(3), 342-350. https://doi.org/10.1016/j.rse.2004.12.012
Silverio, W., and Jaquet, J. M. (2017). Evaluating glacier fluctuations in Cordillera Blanca (Peru) by remote sensing between 1987 and 2016 in the context of ENSO. Archives Des Sciences, 69(2), 145-161.
Sun, X., Zhang, R., Huang, W., Sun, A., Lin, L., Xu, H., and Jiang, D. (2019). The response between glacier evolution and eco-geological environment on the Qinghai-Tibet Plateau. China Geology, 2(1), 1-7. https://doi.org/10.31035/cg2018078
Ubeda, J. (2011). El impacto del cambio climático en los glaciares del complejo volcánico Nevado Coropuna, (Cordillera Occidental de los Andes Centrales). Universidad Complutense de Madrid.
USGS. (2021). Landsat collection 1. https://www.usgs.gov/landsat-missions/landsat-collection-1?qt-science_support_page_related_con=1#qt-science_support_page_related_con
Van Wyk de Vries, M., Carchipulla-Morales, D., Wickert, A. D., Minaya, V. G. (2022). Glacier thickness and ice volume of the Northern Andes. Scientific Data, 9(1), 1–16. https://doi.org/10.1038/s41597-022-01446-8
Vörösmarty, C. J. (2009). The Earth's natural water cycles. In World Water Development Report 3. https://doi.org/10.1016/B978-0-12-409548-9.11203-5
Vuille, M., Francou, B., Wagnon, P., Juen, I., Kaser, G., Mark, B. G., and Bradley, R. S. (2008). Climate change and tropical Andean glaciers: Past, present and future. Earth-Science Reviews, 89(3-4), 79-96. https://doi.org/10.1016/j.earscirev.2008.04.002
Wang, X., Guo, X., Yang, C., Liu, Q., Wei, J., Zhang, Y., Liu, S., Zhang, Y., Jiang, Z., and Tang, Z. (2020). Glacial lake inventory of High Mountain Asia (1990-2018) derived from Landsat images. Earth System Science Data Discussions, 12, 2169-2182. https://doi.org/10.5194/essd-12-2169-2020
WGMS. (2017). Global glacier change bulletin No. 2 (2014-2015). https://doi.org/10.5904/wgms-fog-2017-10
Zapana, M., Peña, R., Pachac, Y. (2024). Glacier Volume Estimation Using the Glaptop Model in the Cordillera Blanca of Peru. ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M., 3(4), 62–71. https://doi.org/10.18502/espoch.v3i4.17165
Zappa, M., Pos, F., Strasser, U., Warmerdam, P., and Gurtz, J. (2003). Seasonal water balance of an Alpine Catchment as Evaluated by different methods for spatially distributed snowmelt modelling. Nordic Hydrology, 34(3), 179-202. https://doi.org/10.2166/nh.2003.0003
Zeballos, G., Soruco, Á., Cusicanqui, D., Joffré, R., and Rabatel, A. (2014). Uso de imágenes satelitales, modelos digitales de elevación y sistemas de información geográfica para caracterizar la dinámica espacial de glaciares y humedales de alta montaña en Bolivia. Ecología En Bolivia, 49(3), 14-26.
Zhao, X., Wang, X., Wei, J., Jiang, Z., Zhang, Y., and Liu, S. (2020). Spatiotemporal variability of glacier changes and their controlling factors in the Kanchenjunga region, Himalaya based on multi-source remote sensing data from 1975 to 2015. Science of the Total Environment, 745, 140995. https://doi.org/10.1016/j.scitotenv.2020.140995