Baseflow measurement in mountain rivers using LSPIV: A case study of the Tarqui and Yanuncay rivers in the Ecuadorian Andes
Submitted: 2024-10-31
|Accepted: 2025-02-20
|Published: 2025-04-02
Copyright (c) 2025 Santiago A. Ochoa-García, Leandro Massó, Antoine Patalano, Carlos M. Matovelle-Bustos, Paola V. Delgado-Garzón

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Downloads
Keywords:
LSPIV, Surface Flow, Flow Measurement, Base Flows
Supporting agencies:
Abstract:
This study is motivated by the difficulty of applying experimental techniques to characterize base flows in mountain rivers. Intrusive instruments are not optimal for measuring low flow rates, as they require a minimum depth to be submerged and to measure flow velocity. The LSPIV methodology was applied using an Autel Evo II RTK Series 3 UAV. The results were validated through measurements taken with a Redback current meter, showing that the flow rates and velocity fields obtained with the presented techniques are of the same order of approximation. The flow velocity fields resulting from the application of LSPIV enabled the identification of typical flow characteristics in mountain rivers with gravel and boulder beds: zones of acceleration and turbulent mixing, stagnation areas due to obstacles within the flow, flow recirculation, and shear regions caused by interaction with existing morphological structures. Thus, the LSPIV technique is presented as a valuable tool for characterizing extreme flows in mountain rivers using non-intrusive methods.
References:
Aberle, J., Rennie, C.D., Admiraal, D.M., Muste, M. 2017. Methods, Instrumentation, Data Processing and Management. Volume II: Instrumentation and Measurement Techniques. CRC Press/Balkema. https://doi.org/10.1201/9781315158921
Adrian, R.J. 1991. Particle-Imaging Techniques for Experimental Fluid Mechanics. Annu. Rev. Fluid Mech., 23, 261-304. https://doi.org/10.1146/annurev.fl.23.010191.001401
Alongi, F. 2022. River flow monitoring: LS-PIV technique, an image-based method to assess discharge. Doctorate Degree in Civil, Environmental and Materials Engineering. Dipartimento di Ingegneria. Universitá degli Studi di Palermo.
Bandini, F., Lüthi, B., Peña-Haro, S., Borst, C., Liu, J., Karagkiolidou, S., Hu, X., Lemaire, G.G., Bjerg, P.L., Bauer-Gottwein, P. 2021. A Drone- Borne Method to Jointly Estimate Discharge and Manning's Roughness of Natural Streams. Water Resources Research, 57(2). https://doi.org/10.1029/2020WR028266
Biggs, H., Smart, G., Holwerda, N., Doyle, M., McDonald, M., Ede, M. 2021. River discharge from surface velocity measurements - A field guide for selecting alpha. Envirolink Advice Report. Christchurch, New Zealand.
Carrillo-Serrano, V. 2021. Sediment transport in steep rivers with coarse material. PhD thesis, Universidad de Cuenca, Escuela Politécnica Nacional and Universidad Técnica Particular de Loja, Ecuador. CELEC EP. CELEC SUR. Información Técnica. Retrieved Sep 2, 2024, from https://www.celec.gob.ec/celecsur/
Detert, M. 2021. How to Avoid and Correct Biased Riverine Surface Image Velocimetry. Water Resources Research, 57(2). https://doi.org/10.1029/2020WR027833
Díaz-Lozada, J.M. 2019. Avances en la Cuantificación hidrológica y caracterización hidráulica del flujo en el sistema fluvial del Río Carcarañá utilizando ADCP. Tesis Doctoral. Doctorado en Ciencias de la Ingeniería. Facultad de Ciencias Exactas, Físicas y Naturales. Universidad Nacional de Córdoba.
Fujita, I. 2018. Principles of surface velocity gaugings. The 4th IAHR-WMO-IAHS Training Course on Stream Gauging.
Fujita, I., Muste, M., Kruger, A. 1998. Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications. Journal of Hydraulic Research, 36(3), 397-414. https://doi.org/10.1080/00221689809498626
ISO 748. 2007. Hydrometry - Measurement of liquid flow in open channels using currentmeters or floats. International Organization for Standardization, 2007-10-15, Fourth edition.
Jolley, M.J., Russell, A.J., Quinn, P.F., Perks, M.T. 2021. Considerations When Applying Large-Scale PIV and PTV for Determining River FlowVelocity. Frontiers in Water, 3, 709269. https://doi.org/10.3389/frwa.2021.709269
Koutalakis, P., Tzoraki, O., Zaimes, G. 2019. UAVs for Hydrologic Scopes: Application of a Low-Cost UAV to Estimate Surface Water Velocity by Using Three Different Image-Based Methods. Drones, 3(1), 14. https://doi.org/10.3390/drones3010014
Le Coz, J., Hauet, A., Pierrefeu, G., Dramais, G., Camenen, B. 2010. Performance of image-based velocimetry (LSPIV) applied to flash-flood discharge measurements in Mediterranean rivers. Journal of Hydrology, 394(1-2), 42-52. https://doi.org/10.1016/j.jhydrol.2010.05.049
Le Coz, J., Duby, P., Dramais, G., Camenen, B., Laronne, J., Zamler, D., Zolezzi, G. 2011. Use of emerging non-intrusive techniques for flood discharge measurements. 5th International Conference on Flood Management. Tokyo, Japan.
Lobo, A.P. 2019. Implementación de la técnica experimental de velocimetría por seguimiento de partículas (PTV) para cuantificar el recurso hídrico superficial en cursos fluviales de la provincia de Catamarca. Tesis de Maestría. Facultad de Ingeniería y Ciencias Hídricas. Universidad Nacional del Litoral.
Massó, L., Patalano, A., García, C.M., Ochoa-García, S.A., Rodríguez, A. 2024. Enhancing LSPIV accuracy in low-speed flows and heterogeneous seeding conditions using image gradient. Flow Measurement and Instrumentation, 100(2024), 1-16. https://doi.org/10.1016/j.flowmeasinst.2024.102706
Meselhe, E.A., Peeva, T., Muste, M. 2004. Large Scale Particle Image Velocimetry for Low Velocity and Shallow Water Flows. Journal of Hydraulic Engineering, 130(9), 937-940. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:9(937)
Muste, M., Fujita, I., Hauet, A., 2008. Large-scale particle image velocimetry for measurements in riverine environments. Water Resources Research, 44(4), 0-19. https://doi.org/10.1029/2008WR006950
Papanicolaou, A.N., Diplas, P., Dancey, C. L., Balakrishnan, M. 2001. Surface Roughness Effects in Near-Bed Turbulence: Implications to Sediment Entrainment. Journal of Engineering Mechanics, 127(3), 211-218. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:3(211)
Patalano, A., García, C.M., Rodríguez, A. 2017. Rectification of Image Velocity Results (RIVeR): A simple and user-friendly toolbox for large scale water surface Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV). Computers and Geosciences, 109, 323-330. https://doi.org/10.1016/j.cageo.2017.07.009
Perks, M.T., Fortunato, S., Sasso, D., Hauet, A., Le Coz, J., Pearce, S., Peña-Haro, S., Tauro, F., Grimaldi, S., Hortobágyi, B., Jodeau, M., Maddock, I., Pénard, L., Manfreda, S. 2020. Towards harmonization of image velocimetry techniques for river surface velocity observations. Earth System Science Data, 12, 1545-1559. https://doi.org/10.5194/essd-12-1545-2020
Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., Ter Haar Romeny, B., Zimmerman, J.B., Zuiderveld, K. 1987. Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing, 39, 355-368. https://doi.org/10.1016/S0734-189X(87)80186-X
Raffel, M., Willert-Christian, E., Wereley, S.T., Kompenhans, J. 2007. Particle Image Velocimetry, Experimental Fluid Mechanics. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72308-0
Sharif, O. 2022. Measuring surface water flow velocities by a drone and large-scale particle image velocimetry (LSPIV). Master Thesis. University of Twente.
Singh, P., Ramasatri, K.S., Kumar, N., Bhatnagar, N.K. 2003. Suspended sediment transport from the Dokriani Glacier in the Garhwal Himalayas. Hydrology Research, 34(3), 221-244. https://doi.org/10.2166/nh.2003.0005
Stamhuis, E.J. 2006. Basics and principles of Particle Image Velocimetry (PIV) for mapping biogenic and biologically relevant flows. Aquatic Ecology, 40, 463-479. https://doi.org/10.1007/s10452-005-6567-z
Strelnikova, D., Paulus, G., Käfer, S., Anders, K.H., Mayr, P., Mader, H., Scherling, U., Schneeberger, R. 2020. Drone-Based Optical Measurements of Heterogeneous Surface Velocity Fields around Fish Passages at Hydropower Dams. Remote Sensing, 12(3), 384. https://doi.org/10.3390/rs12030384
Thielicke, W., Stamhuis, E.J., 2014. PIVlab - Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB. Journal of Open Research Software, 2(1). https://doi.org/10.5334/jors.bl
Wilcox, A.C., Wohl, E.E., 2007. Field measurements of three-dimensional hydraulics in a step-pool channel. Geomorphology, 83(3-4), 215-231. https://doi.org/10.1016/j.geomorph.2006.02.017