Comparing different models for fuel load estimation in rockrose shrubland in the Mediterranean region from LiDAR data

|

Accepted: 2025-03-17

|

Published: 2025-04-03

DOI: https://doi.org/10.4995/raet.2025.22817
Funding Data

Downloads

Keywords:

Biomass, forest fires, Cistus ladanifer L., remote sensing, LiDAR-PNOA

Supporting agencies:

Junta de Andalucía

Fondo Europeo de Desarrollo Regional FEDER dentro del programa Interreg V A España – Portugal (POCTEP) 2014-2020

Instrumento de Recuperación Europeo (EU Next Generation)

Dirección General de Desarrollo Rural, Innovación y Formación Agroalimentaria (DGDRIFA)

Agencia Estatal de Investigación

Abstract:

Shrub communities of Cistus ladanifer L. (gum rockrose) are one of the most characteristic, extensive, and prone to wildfire of Mediterranean ecosystems. In addition, these shrublands have a remarkable potential for the extraction of subproducts, which are highly valuable in the pharmaceutical, food and cosmetic industries. Therefore, estimating and their biomass is essential to manage and prioritize their use, calculate their carbon content and CO2 capture as well as predict their fire behaviour and possible emissions. In this study, we aim to estimate the fuel load of gum rockrose shrublands in southern Spain based on airborne LIDAR data from PNOA. For this purpose, non-destructive field inventories were carried out with measurements of mean height and shrub cover in 143 circular plots in Andalusia region. These two fuel variables were used as inputs in an existing specific equation to estimate the fuel load for C. ladanifer.

Two different approaches were compared to estimate the fuel load of these gum rockrose  by linear regression analysis: (i) direct estimation (DE), consisting of the adjustment that directly relates fuel load to ALS data; and (ii) indirect estimation in two steps (IE) based on the adjustment of equations to estimate the input variables (shrub height and cover) of the gum rockrose from LiDAR data. Better goodness-of-fit statistics were obtained in the direct estimation model than in the indirect estimation model, explaining 70% and 72% of the observed variability, respectively. These results can be valuable for the development of gum rockrose biomass mapping for use in fire prevention and suppression and in the planning of harvesting for the extraction of their products.

Show more Show less

References:

Alonso-Rego, C., Arellano-Pérez, S., Cabo, C., Ordoñez, C., Álvarez-González, J. G., Díaz-Varela, R. A., and Ruiz-González, A. D. (2020). Estimating fuel loads and structural characteristics of shrub communities by using terrestrial laser scanning. Remote Sensing, 12(3704), 1-21. https://doi.org/10.3390/rs12223704

Andersen, H.E., McGaughey, R.J., Reutebuch, S.E. (2005). Estimating forest canopy fuel parameters using LIDAR data. Remote Sensing of Environment, 94, 441-449. https://doi.org/10.1016/j.rse.2004.10.013

Araque-Jiménez, E. (2013). Medio siglo de grandes incendios forestales en Andalucía (1961‑2011). Méditerranée. Revue géographique des pays méditerranéens / Journal of Mediterranean geography, (121), 41-52. https://doi.org/10.4000/mediterranee.6840

Arellano-Pérez, S., Guerra-Hernández, J., Botequim, B., Alonso-Rego, C., López-Fernández, M., Álvarez-González, J. G., Guilherme-Borges, J., y Ruiz-González, A. D. (2022). Estimación de la altura del complejo de combustible en comunidades de matorral desarbolado a partir de datos LIDAR de baja densidad. En 8º Congreso Forestal Español: "La Ciencia Forestal y Su Contribución a Los Objetivos de Desarrollo Sostenible," 13.

Bados, R., Esteban, L. S., Esteban, J., Fernández-Landa, A., Sánchez, T., and Tolosana, E. (2021). Biomass equations for rockrose (Cistus laurifolius L.) shrublands in north-central Spain. Forest Systems, 30(3). https://doi.org/10.5424/fs/2021303-17997

Crespo Martín, J., Cardenal Galván, J. A., Peral Pacheco, D., and Vallejo Villalobos, J. R. (2009). Jara pringosa (Cistus ladanifer), usos, utilidades y curiosidades en Extremadura. Revista de Estudios Extremeños, Tomo LXV(III), 1637-1650.

Estornell, J., Ruiz, L. A., Velázquez-Martí, B., and Fernández-Sarría, A. (2011). Estimation of shrub biomass by airborne LiDAR data in small forest stands. Forest Ecology and Management, 262(9), 1697-1703. https://doi.org/10.1016/j.foreco.2011.07.026

Fogarty, L. G., and Pearce, H. G. (2000). Draft field guides for determining fuel loads and biomass in New Zealand vegetation types. Fire Technology Transfer Note, March.

Glenn, N. F., Neuenschwander, A., Vierling, L. A., Spaete, L., Li, A., Shinneman, D. J., Pilliod, D. S., Arkle, R. S., and McIlroy, S. K. (2016). Landsat 8 and ICESat-2: Performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass. Remote Sensing of Environment, 185(2015), 233-242. https://doi.org/10.1016/j.rse.2016.02.039

González-Ferreiro, E., Diéguez-Aranda, U., Crecente- Campo, F., Barreiro-Fernández, L., Miranda, D., Dorado, F.C. (2014). Modelling canopy fuel variables for Pinus radiata D. Don in NW Spain with low-density LiDAR data. International Journal of Wildland Fire, 23, 350-362. https://doi.org/10.1071/WF13054

Greaves, H. E., Vierling, L. A., Eitel, J. U. H., Boelman, N. T., Magney, T. S., Prager, C. M., and Griffin, K. L. (2016). High-resolution mapping of aboveground shrub biomass in Arctic tundra using airborne lidar and imagery. Remote Sensing of Environment, 184, 361-373. https://doi.org/10.1016/j.rse.2016.07.026

Hernández-Rodríguez, M., Martín-Pinto, P., Oria-de-Rueda, J. A., and Diaz-Balteiro, L. (2017). Optimal management of Cistus ladanifer shrublands for biomass and Boletus edulis mushroom production. Agroforestry Systems, 91(4), 663-676. https://doi.org/10.1007/s10457-016-9994-z

Keane, R. E. (2015). Wildland fuel fundamentals and applications. New York, US: Springer International Publishing. https://doi.org/10.1007/978-3-319-09015-3

Lefsky, M.A., Cohen, W.B., Parker, G.G., Harding, D.J. (2002). Lidar remote sensing for ecosystem studies: Lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. BioScience, 52(1), 19-30. https://doi.org/10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2

Li, A., Dhakal, S., Glenn, N. F., Spaete, L. P., Shinneman, D. J., Pilliod, D. S., Arkle, R. S., and McIlroy, S. K. (2017). Lidar aboveground vegetation biomass estimates in shrublands: Prediction, uncertainties and application to coarser scales. Remote Sensing, 9(903). https://doi.org/10.3390/rs9090903

MAPA. (2019). Los incendios forestales en España. Decenio 2006-2015. Ministerio de Agricultura, Pesca y Alimentación Secretaría General Técnica Impresión, Madrid. 166 p.

Marino, E., Tomé, J.L., Hernando, C., Guijarro, M., Madrigal, J. (2022a). Transferability of airborne LiDAR data for canopy fuel mapping: effect of pulse density and model formulation. Fire, 5, 126 (Special Issue "Advances in Forest Fire Behaviour Modelling Using Remote Sensing"). https://doi.org/10.3390/fire5050126

Marino Del Amo, E., Arellano Pérez, S., Tomé Morán, J. L., Martín Alcón, S., Lobo Sánchez, A., Rodríguez Y Silva, F., Romero Romero, D., Romero Morato, A., Senra Rivero, F., y Castelló Palazón, F. J. (2022). Caracterización y modelización de combustibles forestales en Andalucía: generación de cartografías de alta resolución e integración en la plataforma SIPNA en el marco del proyecto CILIFO. En 8º Congreso Forestal Español: "La Ciencia Forestal y Su Contribución a Los Objetivos de Desarrollo Sostenible," 14.

Mihajlovski, B., Fernandes, P.M., Pereira, J.M.C., Guerra-Hernández, J. (2023). Comparing Forest Understory Fuel Classification in Portugal Using Discrete Airborne Laser Scanning Data and Satellite Multi-Source Remote Sensing Data. Fire, 6(9). https://doi.org/10.3390/fire6090327

Montealegre, A.L., Lamelas, T., De la Riva, J. (2015). A Comparison of Open-Source LiDAR Filtering Algorithms in a Mediterranean Forest Environment. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2015.2436974

Montero, G., López-Leiva, C., Ruiz-Peinado, R., López-Senespleda, E., Onrubia, R., y Pasalodos, M. (2020). Producción de biomasa y fijación de carbono por los matorrales españoles y por el horizonte orgánico superficial de los suelos forestales. 447.

Pasalodos-Tato, M., Ruiz-Peinado, R., del Río, M., and Montero, G. (2015). Shrub biomass accumulation and growth rate models to quantify carbon stocks and fluxes for the Mediterranean region. European Journal of Forest Research, 134(3), 537-553. https://doi.org/10.1007/s10342-015-0870-6

Pearce, H. G., Anderson, W. R., Fogarty, L. G., Todoroki, C. L., & Anderson, S. A. J. (2010). Linear mixed-effects models for estimating biomass and fuel loads in shrublands. Canadian Journal of Forest Research, 40(10), 2015-2026. https://doi.org/10.1139/X10-139

Riaño, D., Meier, E., Allgöwer, B., Chuvieco, E., Ustin, S.L. (2003). Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling. Remote Sensing of Environment, 86, 177-186. https://doi.org/10.1016/S0034-4257(03)00098-1

Riaño, D., Chuvieco, E., Ustin, S. L., Salas, J., Rodríguez-Pérez, J. R., Ribeiro, L. M., Viegas, D. X., Moreno, J. M., & Fernández, H. (2007). Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging. International Journal of Wildland Fire, 16(3), 341-348. https://doi.org/10.1071/WF06003

Roussel, J.R., Auty, D., Coops, N.C., Tompalski, P., Goodbody, T.R.H., Meador, A.S., Bourdon, J.F., de Boissieu, F., Achim, A. (2020). lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sensing of Environment, 251(August), 112061. https://doi.org/10.1016/j.rse.2020.112061

Ruiz-Peinado, R., Moreno, G., Juarez, E., Montero, G., and Roig, S. (2013). The contribution of two common shrub species to aboveground and belowground carbon stock in Iberian dehesas. Journal of Arid Environments, 91, 22-30. https://doi.org/10.1016/j.jaridenv.2012.11.002

Vega, J. A., Arellano-Pérez, S., Álvarez-González, J. G., Fernández, C., Jiménez, E., Fernández-Alonso, J. M., Vega-Nieva, D. J., Briones-Herrera, C., Alonso-Rego, C., Fontúrbel, T., and Ruiz-González, A. D. (2022). Modelling aboveground biomass and fuel load components at stand level in shrub communities in NW Spain. Forest Ecology and Management, 505, 119926. https://doi.org/10.1016/j.foreco.2021.119926

Zoido, F. (Ed.). (2014). Bases para la realización del Sistema Compartido de Información sobre el Paisaje de Andalucía. Aplicación a Sierra Morena. Regional Government's Department of Environment and Spatial Planning. Junta de Andalucía. Consejería de Medio Ambiente y Ordenación del Territorio.

Show more Show less