Landsat Collection 2: Key Information and recommendations for data users and product developers
Submitted: 2025-03-07
|Accepted: 2025-04-23
|Published: 2025-05-22
Copyright (c) 2025 Xavier Pons, Cristina Cea, Óscar González-Guerrero, Jordi Cristóbal

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Downloads
Keywords:
Landsat, Collection-2, radiance, TOA reflectance, BOA reflectance
Supporting agencies:
Xavier Pons is the recipient of an ICREA Academia Excellence in Research Grant (2023–2027)
SGR grant from Consolidated and Quality Research Groups of the Generalitat de Catalunya (SGR 2021 no. 00554)
Spanish MCIU Ministry DynaFun project (PID2023-152719OB-C21 MCIU/AEI/ ERDF,EU)
Abstract:
The United States Geological Survey (USGS) effort to provide coherent data for the Landsat series from various perspectives (e.g., geometric, radiometric, or metadata) is, without a doubt, admirable, especially considering the vast volume of data and the continuous scientific and technical challenges over many decades. Landsat Collection 2, initiated in 2020, represents the latest effort in this direction. This paper presents a detailed explanation of some important changes compared to previous distributions. The text highlights aspects of good practices (e.g., the choice of distribution format or the explicit coding of saturated pixels), radiometric inconsistencies (e.g., in areas of scene overlap or images taken on close dates), and decisions that pose difficulties for the user community (e.g., termination of the distribution of lower processing level products, exclusion of level 2 products for the first three Landsat satellites, inclusion of metadata that can lead to confusion, inconsistency of NoData values). It also addresses the significant differences in radiances between data processed by ESA (CEOS) and provides justification for the decision to change the meaning of the traditional DN, resulting in shifts in radiance rescaling factors (scale and offset) throughout the year. Furthermore, the paper offers alternatives for some problematic aspects of thermal infrared data processing. The aim is to assist other users and contribute to the debate on best practices in remote sensing image processing.
References:
Chen, F., Wang, C., Zhang, Y., Yi, Z., Fan, Q., Liu, L., Song, Y. 2021. Inconsistency among Landsat Sensors in Land Surface Mapping: A Comprehensive Investigation Based on Simulation. Remote Sensing. 13(7), 1383. https://doi.org/10.3390/rs13071383
Crawford, C.J., Roy, .D.P., [32 additional authors] and Zahn, S. 2023. The 50-Year Landsat Collection 2 Archive. Science of Remote Sensing, 8, 100103. https://doi.org/10.1016/j.srs.2023.100103
Cristóbal, J., Pons, X., Serra, P. 2004. Sobre el uso operativo de Landsat-7 ETM+ en Europa. Revista de Teledetección, 21, 55-59. https://www.aet.org.es/revistas/revista21/AET21-11.pdf
Maciel, D.A., Pahlevan, N., Barbosa, C.C.F., de Novo, E.M.L.d.M., Paulino, R.S., Martins, V.S., Vermote, E., Crawford, C.J. 2023. Validity of the Landsat surface reflectance archive for aquatic science: Implications for cloud-based analysis. Limnology and Oceanography Letters, 8, 850-858. https://doi.org/10.1002/lol2.10344
Masó, J. 2023. OGC Cloud Optimized GeoTIFF Standard. Open Geospatial Consortium. https://www.opengis.net/doc/is/COG/1.0
Padró, J.C., Muñoz, F.J., Ávila, L.A., Pesquer, L., Pons, X. 2018. Radiometric Correction of Landsat-8 and Sentinel-2A Scenes Using Drone Imagery in Synergy with Field Spectroradiometry. Remote Sensing, 10, 1687. https://doi.org/10.3390/rs10111687
Pons, X., Pesquer, L., Cristóbal, J., González-Guerrero, O. 2014. Automatic and improved radiometric correction of Landsat imagery using reference values from MODIS surface reflectance images. International Journal of Applied Earth Observation and Geoinformation, 33, 243-254. https://doi.org/10.1016/j.jag.2014.06.002
Pons, X. 2025. MiraMon. Geographic Information System and Remote Sensing software. Bellaterra: CREAF. https://www.miramon.cat/Index_eng.htm
Sobrino, J.A., Jiménez-Muñoz, J.C., Soria, G., Romaguera, M., Guanter, L., Moreno, J. 2008. Land Surface Emissivity Retrieval From Different VNIR and TIR Sensors. IEEE Transactions on Geoscience and Remote Sensing, 46(2), 316-327. https://doi.org/10.1109/TGRS.2007.904834
USGS. 2020. Landsat 8-9 OLI/TIRS Collection 2 Level 1 Data Format Control Book. Retrieved March 5, 2025, from https://www.usgs.gov/media/files/landsat-8-9-olitirs-collection-2-level-1-dataformat-control-book
USGS. 2021. Landsat 8-9 Calibration and Validation (Cal/Val) Algorithm Description Document (ADD). Retrieved March 5, 2025, from https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/LSDS-1747_Landsat8-9_CalVal_ADD-v4.pdf
USGS. 2022. Landsat 9 Data Users Handbook. Retrieved March 5, 2025, from https://www.usgs.gov/media/files/landsat-9-data-users-handbook
USGS. 2023. Landsat 8-9 OLI/TIRS Collection 2 Level 2 Data Format Control Book. Retrieved March 5, 2025, from https://www.usgs.gov/media/files/landsat-8-9-olitirs-collection-2-level-2-dataformat-control-book