Revisiting Cosa (Ansedonia, Italy): contributions of SAR-X images from the PAZ satellite to non-invasive archaeological prospecting

Authors

DOI:

https://doi.org/10.4995/var.2024.21135

Keywords:

remote sensing, PAZ, synthetic aperture radar (SAR)-X, multispectral images, archaeology, light detection and ranging (LiDAR)

Abstract

 Highlights:

  • Some archaeological results obtained using SAR-X images received through the PAZ satellite and applied to a part of what was called Ager Cosanus are shown in this article.
  • The study has been completed with the analysis of multispectral images TripleSAT and Sentinel-2A and the historical aerial photos from 1944 and 1954.
  • The possibilities of using PAZ images treated multi-temporally as a high-resolution panchromatic image applicable to multispectral optical images of the type Sentinel-2 were tested.

Abstract:

Some archaeological results are shown in this article, which have been generated from the use of Synthetic Aperture Radar (SAR)-X images obtained from the PAZ satellite and applied to part of what was called Ager Cosanus, that is, the territory of the city of Cosa, which was one of the first maritime colonies of Rome in the heart of Etruscan territory. Our study has been carried out mainly based on previous works in which a set of images was used to improve the quality of the resulting image, reducing the noise caused by the speckle of the radar images and maintaining the quality of the spatial resolution that can be obtained from these images (1.25 m/pixel). More specifically, a set of images obtained between 2019 and 2021 was used. The study has been completed with the analysis of multispectral images TripleSAT and Sentinel-2A, the historical aerial photos taken from 1944 and 1954, and the use of the historical cadastre of Tuscany, prepared at the beginning of the 19th century. As an addition, the Digital Terrain Model (DTM) Light Detection And Ranging (LiDAR) of the Region of Tuscany was used, on which various functions of the Relief Visualization Tool (RVT) programme have been applied, complementing or contrasting the results. It can be confirmed that the multi-temporal treatment of SAR PAZ images provides better results than an individualised analysis of the image. Finally, it is of great interest to verify the results of studies using new technologies, where it was previously possible to resort only to prospecting on the ground and to analogical aerial photography in black and white. In this case, the Sinistra Decumano I (SDI) structure was seen, which Castagnoli observed in the aerial photography, but of which he only located materials on the ground and it was visualised both in individualised PAZ images and in Sentinel-2.

Downloads

Download data is not yet available.

Author Biographies

José Ignacio Fiz Fernández, Universidad Rovira i Virgili

Departament d’Història I Història de l’Art

Pere Manel Martín Serrano, Universidad Rovira i Virgili

Departament d’Història I Història de l’Art

Mercè Grau, Universidad Rovira i Virgili

Departament d’Història I Història de l’Art

References

Abate,N., Roubis, D., Sogliani, F., Vitale, V., Sileo, M., Arzu, P., … Masini, N. (2023). Integrated use of GIS and remote sensing techniques for landscape-scale archaeological analysis: the case study of Metaponto, Basilicata, Italy. Exploration Geophysics, 55(1), 51–62. https://doi.org/10.1080/08123985.2023.2242885

Adams, R. (1980). Swamps, Canals and the Locations of Ancient Maya Cities. Antiquity, 54, 206–214. https://doi.org/10.1017/S0003598X00043386

Archivio històrico della Toscana (2022). Retrieved September 22,2022 from http://www.sir.toscana.it/consistenza-rete

Blom, R., Crippen, R., Elachi, C., Zarins, J., Clapp, N., & Ledges, G. (1997). Space Technology and the discovery of the lost city of Ubar. In Proceedings of the IEEE Conference: Aerospace Conference, Snowmass (vol 1, pp. 19-28). https://doi.org/10.1109/AERO.1997.574258

Boccia, V., & Szantoi, Z. ( 2020). Copernicus Sentinel-2 Mission: calibration and validation activities. Quarterly, 14(1), 1-2. https://doi.org/10.25923/enp8-6w06

Brodu, N. (2017). Super-resolving multiresolution images with band-independent geometry of multispectral pixels. IEEE Transactions on Geoscience and Remote Sensing, 55(8), 4610-4617. https://doi.org/10.1109/TGRS.2017.2694881

Calastri, Cl. (2004). Una nuova villa con fronte a torrette dall’agro di Cosa. Atlante Temático di Topografía Antica (ATTA), 13,173-186.

Campana, S., Francovich,R., Pericci, F., & Corsi, M., (2006). Aerial Survey Project in Tuscany: years 2000-2005. In S. Campana, M. Forte (Eds.), From Space to Place: 2nd International Conference on Remote Sensing in Archaeology (pp. 497-503). Oxford, England: BAR Publishing.

Campana, S. (2002). High resolution satellite imagery: a new source of information to the archaeological study of italian landscapes? Case study of Tuscany in Proceedings of the Conference Space Applications for Heritage Conservation: 5-8 November 2002, Strasbourg, France Noordwijk, the Netherlands: ESA Publications Division.

Campana, S., Dabas, M., Marasco, L., Piro, S., & Zamuner, D. (2009). Integration of remote sensing, geophysical surveys and archaeological excavation for the study of a medieval mound (Tuscany, Italy). Archaeological. Prospection, 16, 167–176. https://doi.org/10.1002/arp.366

Campana, S., & Francovich, R. (2006). Understanding Archaeological Landscapes: Steps Towards an Improved Integration of Survey Methods in the Reconstruction of Subsurface Sites in South Tuscany. In F. Wiseman,& J. El Baz (Eds.), Remote Sensing in Archaeology. Interdisciplinary Contributions To Archaeology (pp. 239-261). New York, NY: Springer. https://doi.org/10.1007/0-387-44455-6_10

Carandini, A., & Cambi, F. (2002). Paessagi D’Etruria. Valle dell’Albegna. Valle d’Oro. Valle del Chiarone. Valle del Tafone, Roma, Italy: Edizioni di Storia e Letteratura.

Castagnoli, F. (1993). Topografia Antica. Un método di Studio, 2, Roma, Italy: Università degli studi di Roma “La Sapienza”.

Castore: catasti storici regionale. Retrieved September 15, 2023 from http://www502.regione.toscana.it/castoreapp/

Dore, N., Patruno, J., Pottier., E., & Crespi, M. (2013) New research in polarimetric SAR technique for archaeological purposes using ALOS PALSAR data. Archaeological Prospection, 20, 79–87. https://doi.org/10.1002/arp.1446

Ehlers, M. (2008). Multi-image Fusion in Remote Sensing: Spatial Enhancement vs. Spectral Characteristics Preservation in G. Bebis et al. (Eds.), Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science (vol 5359, pp. 75-84). Berlin, Germany: Springer https://doi.org/10.1007/978-3-540-89646-3_8

Elfadaly, A., Abate, N., Masinni, N., & Lasaponara,R. (2020). SAR Sentinel 1 imaging and detection of palaeo-landscape features in the Mediterranean area. Remote Sensing, 12, 2611. https://doi.org/10.3390/rs12162611

Fiz, I., Cuesta, R., Subias, E., & Martin, P. M. (2021) Tests with SAR Images of the PAZ platform applied to the archaeological site of Clunia (Burgos, Spain). Remote Sensing, 13, 2344. https://doi.org/10.3390/rs13122344

Fiz, I., Martin, P. M., Cuesta, R., Subias, E., Codina, D., & Cartes, A. (2022). Examples and results of aerial photogrammetry in archeology with UAV: geometric documentation, high resolution multispectral analysis, models and 3D printing. Drones, 6(3), 59. https://doi.org/10.3390/drones6030059

Garcia Sanchez, J. (2018). Archaeological LiDAR in Italy: Enhancing research with publicly accessible data. Antiquity, 92, 1–10. https://doi.org/10.15184/aqy.2018.147

Geoscopio_WMS – Ortofoto. Retrieved April 20, 2023 from http://www502.regione.toscana.it/ows_ofc/com.rt.wms.RTmap/wms?map=owsofc

Gonenc, A., Ozerdem, M. S., & Acar, E. (2019). Comparison of NDVI and RVI vegetation indices using satellite images. In 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), (pp. 1-4). https://doi.org/10.1109/Agro-Geoinformatics.2019.8820225

Grava, M., Trevisani, M., Sassoli, U., Peri, A., & Lucchesi, F. (2017). Aims and Actual Outcomes of Tuscany Castore Project: A Final Balance. In T. Yomralioglu, J. McLauglhin (Ed.), Cadastre: Geo-information innovations in Land Administration (pp. 181-190). New York, USA: Springer https://doi.org/10.1007/978-3-319-51216-7_16

Hisdesat, PAZ Image Product Guide, PAZ-HDS-GUI-001. (2019). Retrieved April 1, 2021 from https://www.hisdesat.es/wp-content/ uploads/2019/10/PAZ-HDS-GUI-001-PAZ-Image-Product-Guide-issue-1.1-.pdf

Kadhim, I., Abed, F. M., Vilbig, J. M., Sagan, V., & DeSilvey, C. (2023). Combining remote sensing approaches for detecting marks of archaeological and demolished constructions in Cahokia’s Grand Plaza, Southwestern Illinois. Remote Sensing, 15, 1057. https://doi.org/10.3390/rs15041057

Klonus, S., Rosso, P., & Ehlers, M. (2008). Image fusion of high resolution Terrasar-X and multispectral electro-optical data for improved spatial resolution. In Jürgens, C. (Ed.), Remote Sensing – New Challenges of High Resolution (pp. 249-264). Bochum, Germany.

Kokalj, Z., & Hesse, R. (2017). Airborne Laser Scanning Raster Data Visualization: A Guide to Good Practice. Založba ZRC: Ljubljana, Slovenia. https://doi.org/10.3986/9789612549848

Lasaponara, R., & Massini, N. (2013). Satellite synthetic aperture radar in archaeology and cultural landscape: An overview. Archaeological. Prospection, 20, 71–78. https://doi.org/10.1002/arp.1452

Masini, N., Gizzi, F. T., Biscione, M., Fundone, V., Sedile, M., Sileo, M., Lasaponara, R. (2018). Medieval archaeology under the canopy with LiDAR. The (re)discovery of a Medieval fortified settlement in southern Italy. Remote Sensing, 10, 1598. https://doi.org/10.3390/rs10101598

McCann, A. M. (1978). The harbor and fishery remains at Cosa, Italy. Journal of Field Archaeology, 6(4), 391-411. Retrieved June 22, 2023 from https://www.jstor.org/stable/529424

McCauley, J. F., Schaber, G. G., Breed, C. S., Grolier, M. J., Haynes, C. V., Issawi, B., …Blom, R. (1982). Subsurface valleys and geoarcheology of the Eastern Sahara revealed by shuttle radar. Science, 218(4576), 1004–1020.

Mei, S., Jiang, R., Li, X., & Du, Q. (2020). Spatial and spectral joint super-resolution using convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 58(7), 4590-4603. https://doi.org/10.1109/TGRS.2020.2964288

Meyer, F. (2019). Spaceborne Synthetic Aperture Radar: Principles, Data Access, and Basic Processing Techniques. In Imuxcane, A., Herndon, A. E., Bahadur Thapa, R., Cherrington., E. (Eds.), The Synthetic Aperture Radar (SAR) Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation, (pp. 21-63). Huntsville, AL, USA: SERVIR Global Science Coordination Office. https://dx.doi.org/https://doi.org/10.25966/nr2c-s697

Monterroso, A., & Martinez, T. (2018). COSMO SkyMed X-Band SAR application—Combined with thermal and RGB images—in the archaeological landscape of Roman Mellaria (Fuente Obejuna-Córdoba, Spain). Archaeological Prospection, 25, 301–314. https://doi.org/10.1002/arp.1709

Müller, M. U., Ekhtiari N., Almeida R. M., & Rieke. C. (2020). Super-resolution of multispectral satellite images using convolutional neural networks. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information. Sciences, 1, 33-40. https://doi.org/10.5194/isprs-annals-V-1-2020-33-2020

Oimoen, M. J. (2000). An Effective Filter For Removal Of Production Artifacts In U.S. Geological Survey 7.5-Minute Digital Elevation Models. Proceedings of the 14th International Conference on Applied Geologic Remote Sensing, 6-8 November, Las Vegas, Nevada, USA.

Ortiz Villarejo, A. J., & Delgado Barrado, J. M. (2023). DIGITALESCAPE Project—aerial remote sensing, HBIM, and archaeology for the preservation and dissemination of the cultural heritage at risk in the Sierra Sur and Sierra Morena regions. Remote Sensing, 15, 3315. https://doi.org/10.3390/rs15133315

Perego, A. (2009). SRTM DEM destriping with SAGA GIS: consequences on drainage network extraction. alsperGIS - Dati geografici e software per lo studio e la rappresentazione del territorio. Retrieved April 20, 2023 from http://www.alspergis.altervista.org/software/destriping.html

Quilici, L., & Quilici, S. (1978). Ville de l’Agro cosano con fronte a Torrette. Rivista dell’Instituto Nazionales d’Archeologia e Storia dell’Arte, 3(1), 11-64.

Ratha, D., Mandal, D., Kumar, V., Mcnairn, H., A. Bhattacharya, & A. C. Frery. (2019). A generalized volume scattering model-based vegetation index from polarimetric SAR data. IEEE Geoscience and Remote Sensing Letters, 16(11), 1791-1795. https://doi.org/10.1109/LGRS.2019.2907703

Regione Toscana SIPT: Cartoteca. Retrieved April 20, 2023 from http://www502.regione.toscana.it/geoscopio/cartoteca.html

Roca, M., Madrid M., & Celis.R. (Eds.). (2013). Proyecto Cosa: Intervenciones arqueológicas de la Universidad de Barcelona en la ciudad romana, Barcelona, Spain. Universitat de Barcelona. Retrieved from http://diposit.ub.edu/dspace/bitstream/2445/99120/6/Proyecto_Cosa_optimitzat.pdf

Roca, M., & Fiz, I. (2013). Reconstrucción, a partir de fotografía aérea, de la topografía de la colonia de Cosa (Ansedonia, Italia). In Roca, M., Madrid, M., Celis, R. (Eds.), Proyecto Cosa: Intervenciones Arqueológicas de la Universidad de Barcelona en la Ciudad Romana (pp. 69–89), Barcelona, Spain: Universitat de Barcelona. Retrieved from: http://www.icac.cat/?p=24522

Roman, A., Ursu, T., Lăzărescu, V., & Opreanu, C. H. (2016). Multi-sensor surveys for the interdisciplinary landscape analysis and archaeological feature detection at Porolissum in Coriolan. In H.Opreanu, V. A. Lăzărescu (Eds.), Landscape Archaeology on the Northern Frontier of the Roman Empire at Porolissum an Interdisciplinary Research Project ( pp. 237-262). Cluj-Napoca, Romania: Mega Publishing House.

Selige, T., Böhner, J., & Ringeler, A. (2006): Processing of SRTM X-SAR Data to Correct Interferometric Elevation Models for Land Surface Applications. In J. Böhner, K. R. McCloy, & J. Strobl (Eds.), SAGA – Analyses and Modelling Applications (pp. 97-104). Göttingen. Germany.

Servicio OGC fornitio di Regione Toscana. Retrieved August 15, 2023 from http://www502.regione.toscana.it/wmsraster/com.rt.wms.RTmap/wms?map=wmsofc&map_resolution=91&language=ita

Sever, T. L., & Irwin, D. E. (2003). Remote sensing investigation of the Ancient Maya in the Peten Rainforest of Northern Guatemala. Ancient Mesoamerica, 14, 113–122. https://doi.org/10.1017/S0956536103141041

Stewart, C., di Iorio, A., & Schiavon, G. (2013). Analysis of the utility of Cosmo Skymed strip map to detect buried archaeological features in the region of Rome. Experimental component of WHERE project. In R. Lasaponara, N. Masini, & M. Biscione (Eds.), Towards Horizon 2020: Earth Observation and Social Perspectives, Proceedings of the 33rd EARSeL Symposium Matera, Italy, 3–6 June 2013 (pp. 203–212). Matera, Italy: European Association of Remote Sensing Laboratories (EARSeL).

Stewart, C. (2017). Detection of Archaeological residues in vegetated areas using satellite synthetic aperture radar. Remote Sensing, 9, 118. https://doi.org/10.3390/rs9020118

Stewart, C., Oren, E., & Cohen-Sasson, E. (2018). Satellite remote sensing analysis of the Qasrawet Archaeological Site in North Sinai. Remote Sensing, 10, 1090. https://doi.org/10.3390/rs10071090

Tapete, D., & Cigna, F. (2019). COSMO-SkyMed SAR for detection and monitoring of archaeological and cultural heritage sites. Remote Sensing, 11, 1326. https://doi.org/10.3390/rs11111326

Wen, Q., Hea, J., Guana, S., Chena, T., Hua, Y., Wua, W., Liua, F., Qiaoa, Y., Kokb, S., & Yeong, S. (2017). The TripleSat constellation: A new geospatial data service model. Geo-spatial Information Science, 20, 163-173. https://doi.org/10.1080/10095020.2017.1329266

Wiig, F., Harrower, M. J., Brau, A., Nathan, S., Lehne, J. W., Simo, K. M., Sturm, J. O., Trinder, J., Dumitru, I. A., Hensley, S., & Clark, T. (2018). Mapping a subsurface water channel with X-Band and C-Band synthetic aperture radar at the Iron Age archaeological site of ‘Uqdat al-Bakrah (Safah), Oman. Geosciences, 8(9), 334. https://doi.org/10.3390/geosciences8090334

Downloads

Published

2024-07-08

How to Cite

Fiz Fernández, J. I., Martín Serrano, P. M., Grau Salvat, M. M., & Cartes Reverté, A. . (2024). Revisiting Cosa (Ansedonia, Italy): contributions of SAR-X images from the PAZ satellite to non-invasive archaeological prospecting. Virtual Archaeology Review, 15(31), 54–71. https://doi.org/10.4995/var.2024.21135

Issue

Section

Articles

Funding data