The “arte” of marble: an archaeological and digital approach to 19th century hydraulic sawmills in the Almanzora Valley (Almeria, Spain)
DOI:
https://doi.org/10.4995/var.2024.21657Keywords:
hydraulic sawmill, industrial archaeology, unmanned aerial vehicle (UAV), virtual reconstruction, virtual archaeology, SfM photogrammetryAbstract
This work is framed within the historical processes of industrialisation that took place in the Almanzora Valley (Almería, Spain) throughout the 19th and early 20th centuries. This geographic depression located in the centre of Almeria, province in the southeast of Spain, is structured by a river of the same name, with an irregular regime, which flows entirely through Almería territory. This river valley divides the province geologically and climatically from its source in the Sierra de los Filabres to its mouth at the Mediterranean Sea.
In this geographic and geological area, where the exploitation of marble has been a reality since prehistoric times, the so-called hydraulic sawmills emerged in the first half of the 19th century. These production complexes were based on a mechanised system known as ‘arte’ or ‘telar’. Fed by extensive networks of irrigation channels, the introduction of this hydraulic cutting mechanism made it possible to considerably speed up the processing of marble. This progressive mechanisation of the marble industry would lay the foundations of a prosperous economic sector that survives to this day, with a great international projection. A clear example of the development and evolution of these industrial complexes can be found in the so-called Nicoli Factory (Macael, Almería), which due to its location, age and longevity is an excellent case study.
This intricate historical context that gave rise to the hydraulic marble sawmills has been analysed through two growing theoretical lines with a strong methodological and interpretative heterogeneity: Industrial Archaeology and Virtual Archaeology. At the very confluence of both archaeological branches, this study presents a multidisciplinary methodological flow to study this heritage, focusing on the Nicoli Factory specific case (built in the 19th century). Thus, a historical and archival study has been carried out to locate and specify the Nicoli Factory chronologies of use. Subsequently, archaeological prospection was used to analyse and study the factory remains, which were quite altered. In addition to this, the remains digitisation was carried out using Structure from Motion photogrammetry with the support of an unmanned aerial vehicle (UAV). Based on the historical-archaeological data, together with the three-dimensional (3D) model of the environment and the factory remains, the authors proceeded to their digital analysis and the virtual reconstruction of what this factory would have looked like in the early production days. It is therefore a question of using 3D modelling as a method to test different construction and industrial work organisation hypotheses quickly, effectively, at low cost and without affecting the material heritage in any way. An interdisciplinary approach arises to demonstrate that the industrial past can be approached not only from more technical disciplines such as Architecture or Engineering, but also from the heart of Archaeology itself.
As the following lines explain, the use of these digital tools in studies of different periods of the past opens up new and interesting experimentation avenues beyond the mere dissemination of heritage. In this sense, virtual scenarios allow archaeologists not only to reconstruct the object, the structure or the landscape from the remains that exist today but also to face the challenges of the societies that built them. Virtual reconstruction thus becomes a kind of Experimental Archaeology, faster, more convenient and more integrative. Moreover, the fact of working in a virtual scenario allows for easy reproducibility of this reconstruction type; hypotheses can be easily tested or modified in the event of finding new data. Virtual Archaeology, therefore, offers interesting perspectives and tools even for periods closer to the present, which are a priori better known.
Downloads
References
Alba, M. I. (2016). Paisajes industriales: utopías del pasado, recuerdos del futuro. Revista 180(38), 1–8. https://doi.org/10.32995/rev180.Num-38.(2016).art-314
Alba, M. I., & Cano, J. M. (2024). Improvements and methodological innovations in the application of the Historic Landscape Characterisation methodology to industrial heritage landscapes. City, Territory, Architecture, 11(1), 1-17. https://doi.org/10.1186/s40410-023-00222-4
Anónimo, (1893). Report on the marble quarries of Macael in the Sierra de los Filabres. Reports on subjects of general and commercial interest. London: Foreign Office.
Beale, G., & Reilly, P. (2017). After Virtual Archaeology: Rethinking archaeological approaches to the adoption of digital technology, Internet Archaeology, 44. https://doi.org/10.11141/ia.44.1
Benavides, J. A., Aranda, G., Sánchez, M., Alarcón, E., Fernández, S., Lozano, Á., & Esquivel, J. A. (2016). 3D modelling in archaeology: the application of Structure from Motion methods to the study of the megalithic necropolis of Panoria (Granada, Spain). Journal of Archaeological Science: Reports, 10, 495-506. https://doi.org/10.1016/j.jasrep.2016.11.022
Benavides, J. A., Martín, J. M., & Rouco, J. (2020). Levantamiento arquitectónico y análisis arqueológico del castillo de Píñar como punto de partida para su conservación. Virtual Archaeology Review, 11(22), 95-115. https://doi.org/10.4995/var.2020.12397
Benavides, J. A., Rodríguez, J. M., & Rouco, J. (2023). Workflow for high definition documentation of the roman archaeological site of Herrera (Seville). Disegnarecon, 16(30), 2.1-2.10. https://doi.org/10.20365/disegnarecon.30.2023.2
Bisson-Larrivée, A., & LeMoine, J.-B. (2022). Photogrammetry and the impact of camera placement and angular intervals between images on model reconstruction. Digital Applications in Archaeology and Cultural Heritage, 26, e00224. https://doi.org/https://doi.org/10.1016/j.daach.2022.e00224
Cano, J. M. (2007). Arqueólogos en la fábrica. Breve recorrido por la historiografía de la Arqueología Industrial. SPAL, 16, 53–67. https://doi.org/10.12795/spal.2007.i16.04
Cámalich, M. D., Martínez, G., Martín, D., Afonso, J. A., González, P., & Goñi, A. (1999). Los inicios y consolidación de la economía de producción en la Depresión de Vera y Valle de Almanzora (Almería). Saguntum, 2, 475-483.
Carreño, J. J. (2022). La explotación del mármol de Sierra de los Filabres (Almería): los ferrocarriles de vía estrecha de Macael y Cobdar a principios del s. XX. En P. Plasencia-Lozano, A. Rodríguez, R. Hernando, & S. Huerta (Eds.), Actas del Duodécimo Congreso Nacional y Cuarto Congreso Internacional Hispanoamericano de Historia de la Construcción. Mieres, 4-8 octubre 2022 (vol. 1, pp. 201-210). Madrid: Instituto Juan de Herrera.
Carreras, C., & Navarro, R. M. (2010). Los territorios del agua: Sierra de los Filabres. Sevilla: Consejería de Medio Ambiente y Ordenación del Territorio.
Carrero-Pazos, M., Vilas-Estévez, B., & Vázquez-Martínez, A. (2018). Digital imaging techniques for recording and analysing prehistoric rock art panels in Galicia (NW Iberia). Digital Applications in Archaeology and Cultural Heritage, 8, 35–45. https://doi.org/10.1016/j.daach.2017.11.003
Carretero, A. (1995). La industria del mármol en Almería. Almería: Universidad de Almería.
Carretero, A., & Aznar, J. A. (2008). El mármol de Macael. Evolución de los medios de transporte”. TST: Transportes, Servicios y telecomunicaciones, 27, 250-261.
Castillo, J. (1998). Macael y Laroya en la Alta Edad Moderna (1498-1650): Conquista, época morisca y repoblación. Almería: Instituto de Estudios Almerienses.
Cerdá, M. (2008). Arqueología Industrial. Valencia: Universitat de Valencia.
Cressier, P. (2004). Historias de capiteles. ¿Hubo talleres califales provinciales?. Cuadernos de Madinat al-Zahra’, 5, 355-375.
Gabrilik, P., la Cour-Harbo, A., Kalvodova, P., Zalud, L., & Janta, P. (2018). Calibration and accuracy assessment in a direct georeferencing system for UAS photogrammetry. International Journal of Remote Sensing, 39(15-16), 4931-4959. https://doi.org/10.1080/01431161.2018.1434331
Garstki, K. (2017). Virtual Representation: the production of 3D digital artifacts. Journal of Archaeological Method and Theory, 24(3), 726–750. https://doi.org/10.1007/s10816-016-9285-z
García, M. (1996). El mundo de los canteros y el léxico del mármol. Almería: Arraez Editores.
González, J. A. (2017). Canteros y caciques en la lucha por el mármol. Almería: Instituto de Estudios Almerienses.
Grewe, K. (2010). La máquina romana de serrar piedras. La representación en bajorrelieve de una sierra de piedras de la antigüedad, en Hierápolis de Frigia y su relevancia para la historia técnica. En G. Meneses (Ed.), Las técnicas y las construcciones en la ingeniería romana. Congreso de las obras Públicas Romanas (pp. 381-402). Madrid: Fundación de la Ingeniería Técnica de Obras Públicas.
Gutiérrez, S. (1997). Arqueología. Introducción a la historia material de las sociedades del pasado. Alicante: Publicaciones de la Universidad de Alicante.
Kessener, P. (2010). Stone sawing machines of Roman and Early Byzantine Time in the Anatolian Mediterranean. Journal of the International Society of Molinology, 70, 34–35.
Lancaster, J., & Matney, T. (2023). Digitally constructing a late Early Bronze Age roof. Observations and conclusions. Digital Applications in Archaeology and Cultural Heritage, 28, e00258. http://dx.doi.org/10.1016/j.daach.2023.e00258
Lázaro, R., (1980). Inscripciones Romanas de Almería. Almería: Cajal.
Mangartz, F. (2010). Die Byzantinischen werkstätten von Ephesos: Baubefund, Rekonstruktion, Architekturteile. Mainz: Verlag des Römisch-Germanischen Zentralmuseums.
Maldonado, A. (2020). La Aplicación de la Fotogrametría (SFM) y las Nuevas Tecnologías para la Mejora de la Documentación, Difusión y Divulgación del Patrimonio Arqueológico de Pequeño y Mediano Tamaño (Tesis doctoral, Universidad de Granada). http://hdl.handle.net/10481/62261
Marčiš, M., & Fraštia, M. (2023). Effect of camera network configuration on the accuracy of digitization of architectural objects, Digital Applications in Archaeology and Cultural Heritage, 28, e00254. https://doi.org/10.1016/j.daach.2023.e00258
Marrodán, E. (2007). De la fascinación formal a la nostalgia. La ruina industrial en el paisaje contemporáneo. Bienes culturales: revista del Instituto del Patrimonio Histórico Español, 7, 103-117.
Martínez, G. (1987). El Cerro del Nacimiento (Macael), un asentamiento argárico en el valle medio del río Almanzora. Cuadernos de Prehistoria y Arqueología de la Universidad de Granada, 12, 81–100. https://doi.org/10.30827/cpag.v12i0.1276
Martínez, R. M., Maldonado, A., Vera, J. C., Bretones, M. D., Balbín, R., & Bueno, P. (en prensa). El conjunto megalítico de Las Sileras (Córdoba). Una aproximación multiescala y digital a un rompecabezas grabado en piedra. Trabajos de Prehistoria, 81(1). https://doi.org/10.3989/tp.2024.966
Pardo, C. J. (2016). El patrimonio industrial en España. Paisajes, lugares y elementos singulares. Madrid: Akal.
Pereira, J. M. (2013). Modelado 3D en patrimonio cultural por técnicas de structure from motion. Ph Investigación, 1, 77-87.
Reilly, P. (1991). Towards a Virtual Archaeology. En S. Rahtz y K. Lockyear (Eds.), CAA90. Computer Applications and Quantitative Methods in Archaeology 1990 (BAR International Series 565) (pp. 132-139). Oxford: Tempus Reparatum.
Remondino, F. (2011). Heritage recording and 3D modeling with photogrammetry and 3D scanning. Remote Sensing, 3, 1104–1138. https://doi.org/10.3390/rs3061104
Rodríguez, E., Casals, J. R., & Celestino, S. (2023). Application of real-time rendering technology to archaeological heritage virtual reconstruction: the example of Casas del Turuñuelo (Guareña, Badajoz, Spain). Virtual Archaeology Review, 14(28), 38–53. https://doi.org/10.4995/var.2023.17460
Rojas-Sola ,J. I., del Río-Cidoncha, G., & Coronil-García, Á. (2020). Industrial Archaeology Applied to the Study of an Ancient Harvesting Machine: Three-Dimensional Modelling and Virtual Reconstruction. Agriculture, 10(8), 322. https://doi.org/10.3390/agriculture10080322
Rouco, J. (2021). Las fortificaciones medievales de la Alpujarra Alta desde la Arqueología de la Arquitectura y del Paisaje (Tesis doctoral, Universidad de Granada). http://hdl.handle.net/10481/71115
Rouco, J., & Benavides, J. A. (2023). La fotogrametría SfM mediante UAS para la documentación de las fortificaciones de la Alpujarra (Granada y Almería, España). En M.G. Bevilacqua & D. Ulivieri (eds), Defensive architecture of the Mediterranean (vol 15, pp. 1139-1146). Pisa: Università degli Studi di Pisa, Universidad Politécnica de Valencia. https://doi.org/10.12871/9788833397948143
Shults, R., Levin, E., Aukazhiyeva, Z., Pavelka, K., Kulichenko, N., Kalabaev, N., Sagyndyk, M., & Akhmetova, N. (2023). A Study of the Accuracy of a 3D Indoor Camera for Industrial Archaeology Applications. Heritage, 6(9), 6240-6267. https://doi.org/10.3390/heritage6090327
Stanga, C., Banfi, F., & Roascio, S. (2023). Enhancing building archaeology: drawing, UAV photogrammetry and scan-to-BIM-to-VR process of ancient Roman ruins. Drones, 7(8). https://doi.org/10.3390/drones7080521
Staropoli, L., Acevedo, V. J., Ávido, D. N., & Vitores, M. (2023). Reflections of the practice of digital archaeology: virtual cultural heritage construction and communication. Virtual Archaeology Review, 14(29), 118–135. https://doi.org/10.4995/var.2023.19292
Süvari, A., Okuyucu, E., Çoban, G., & Eren, E. (2023). Virtual Reconstruction with the Augmented Reality Technology of the Cultural Heritage Components that have Disappeared: The Ayazini Virgin Mary Church. Journal on Computing and Cultural Heritage, 16(1), 1–16. https://doi.org/10.1145/3579361
Tarini, M., Cignoni, P., & Montani, C. (2006). Ambient Occlusion and Edge Cueing to Enhance Real Time Molecular Visualization. IEEE Transactions on Visualization and Computer Graphics, 12(5), 1237-1244. https://doi.org/10.1109/TVCG.2006.115
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Virtual Archaeology Review
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.