Unlocking the interactive potential of digital models with game engines and visual programming for inclusive VR and web-based museums
Submitted: 2024-10-16
|Accepted: 2025-01-12
|Published: 2025-01-31
Copyright (c) 2025 Virtual Archaeology Review

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Downloads
Keywords:
virtual reality (VR), interactivity, visual programming language (VPL), historic building information modelling (HBIM), WebVR, game engine (GE), user experience (UX)
Supporting agencies:
Abstract:
Highlights:
- Digital surveying, Historic Building Information Modeling, Game Engines and visual programming are enhancing virtual reality technologies, turning static models into engaging, interactive virtual environments (IVE)
- A VR app and WebVRapplication have been developed for the Ospedale Maggiore in Milan, integrating virtual-visual storytelling (VVS) with three-dimensional (3D) animations, textual information, and audio to enhance user engagement
- The VR and Web VR solutions support a wide range of devices, making cultural heritage more accessible to diverse audiences and promoting a more inclusive understanding of history and architecture
Abstract:
In an era marked by rapid digital transformation, the preservation and dissemination of cultural heritage increasingly depend on advanced technologies to convey both its tangible and intangible values, whether on-site or remotely. Monuments, archaeological sites, historical centres, and museums are progressively recognising the transformative potential of extended reality (XR) technologies. Among these, virtual reality (VR) has emerged as a particularly effective tool for communicating information and engaging visitors. These technologies facilitate the creation of immersive, interactive experiences that provide access to vast datasets, often difficult to explore within the limitations of physical settings. This study investigates these emerging paradigms, specifically focusing on the roles played by digital surveying, data interpretation, Historic Building Information Modelling (HBIM), and visual programming languages (VPL) in developing innovative VR solutions. These advancements allow for the transformation of static BIM into dynamic interactive virtual environments (IVE) and virtual objects (IVO), which respond to user input in real-time, thereby fostering engaging and dynamic digital experiences. A case study of the Ospedale Maggiore in Milan—designed by Filarete in the mid-15th century and currently housing the University of Milan—serves as an exemplary model of the potential of these technologies. A VR platform and a WebVR application have been developed, enabling users to immerse themselves in a virtual environment enriched by virtual-visual storytelling (VVS). This narrative approach integrates textual information, audio, and 3D animations to enhance the user's experience (UX) and provide a multifaceted understanding of the site’s historical and cultural significance. By supporting a diverse range of devices—including desktop computers, VR headsets, and mobile phones and tablets—these solutions aim to expand accessibility, foster inclusivity, and promote a deeper, more immersive engagement with cultural heritage. The project not only enhances the visitor experience but also advances the role of digital technologies in democratising access to and understanding of cultural and historical resources.
References:
Abbate, E., Invernizzi, S. & Spanò, A. (2022). HBIM parametric modelling from clouds to perform structural analyses based on finite elements: a case study on a parabolic concrete vault. Applied Geomatics, 14(S1), 79–96. https://doi.org/10.1007/s12518-020-00341-4
Adams, A., Feng, Y., Liu, J. C., & Stauffer, E. (2021). Potentials of Teaching, Learning, and Design with Virtual Reality: An Interdisciplinary Thematic Analysis. In Educational communications and technology: issues and innovations (pp. 173–186). Cham: Springer. https://doi.org/10.26803/ijlter.23.1.8
Alhakamy, A. (2024). Extended reality (XR) toward building immersive solutions: the key to unlocking industry 4.0. ACM Computing Surveys, 56(9), 1–38. https://doi.org/10.1145/3652595
Alizadehsalehi, S., Hadavi, A., & Huang, J. C. (2020). From BIM to extended reality in AEC industry. Automation in Construction, 116, 103254. https://doi.org/10.1016/j.autcon.2020.103254
Alizadehsalehi, S., Hadavi, A., & Huang, J. C. (2021). Assessment of AEC students’ performance using BIM-into-VR. Applied Sciences, 11(7), 3225. https://doi.org/10.3390/app11073225
Andrade, A. (2015). Game engines: a survey. EAI Endorsed Transactions on Game-Based Learning, 2(6), 150615. http://dx.doi.org/10.4108/eai.5-11-2015.150615
Banfi, F. (2016). Building Information Modelling – a novel parametric modeling approach based on 3D surveys of historic architecture. In Lecture notes in computer science (pp. 116–127). Cham: Springer. https://doi.org/10.1007/978-3-319-48496-9_10
Banfi, F. (2020). HBIM, 3D drawing and virtual reality for archaeological sites and ancient ruins. Virtual Archaeology Review, 11(23), 16–33. https://doi.org/10.4995/var.2020.12416
Banfi, F. (2023). Virtual Heritage| from 3D modelling to HBIM and extended reality. Santarcangelo di Romagna (RN). Maggioli Editore.
Banfi, F., Dellù, E. R., Roncoroni, F., & Cacudi, G. (2024). Beyond digitisation and high-res 3D modelling of complex archaeological sites: shaping virtual heritage, XR engagement and preservation of Neanderthal Man’s remains and Lamalunga cave. Disegnarecon, 17(32), 6-1. https://doi.org/ 10.20365/disegnarecon.32.2024.6
Barazzetti, L., Banfi, F., Brumana, R., Gusmeroli, G., Previtali, M., & Schiantarelli, G. (2015). Cloud-to-BIM-to-FEM: Structural simulation with accurate historic BIM from laser scans. Simulation Modelling Practice and Theory, 57, 71–87. http://dx.doi.org/10.1016%2Fj.simpat.2015.06.004
Bassier, M., Hadjidemetriou, G., Vergauwen, M., Van Roy, N., & Verstrynge, E. (2016). Implementation of Scan-to-BIM and FEM for the documentation and analysis of heritage timber roof structures. In Lecture Notes in Computer Science (pp. 79–90). https://doi.org/10.1007/978-3-319-48496-9_7
Bekele, M. K., Pierdicca, R., Frontoni, E., Malinverni, E. S., & Gain, J. (2018). A survey of augmented, virtual, and mixed reality for cultural heritage. Journal on Computing and Cultural Heritage, 11(2), 1–36. https://doi.org/10.1145/3145534
Bertocci, S., & Parrinello, S. (2015). Digital survey and documentation of the archaeological and architectural sites. UNESCO World Heritage List, Firenze, IT: Edifir.
Brumana, R., Della Torre, S., Previtali, M., Barazzetti, L., Cantini, L., Oreni, D., & Banfi, F. (2018). Generative HBIM modelling to embody complexity (LOD, LOG, LOA, LOI): surveying, preservation, site intervention—the Basilica di Collemaggio (L’Aquila). Applied Geomatics, 10(4), 545–567.https://doi.org/10.1007/s12518-018-0233-3
Brumana, R., Tucci, G., & Lerma García, J. L. (2019). Special Section Preface: Informative Models and Systems for Virtual Museum. Virtual Archaeology Review, 10(21). https://doi.org/10.4995/var.2019.12357
Bruno, Lagudi, Barbieri, Muzzupappa, Ritacco, Cozza, Peluso, Lupia & Cario, G. (2016). Virtual and augmented reality tools to improve the exploitation of underwater archaeological sites by diver and non-diver tourists. In Lecture notes in computer science (pp. 269–280). https://doi.org/10.1007/978-3-319-48496-9_22
Brusaporci, S., & Trizio, I. (2013). La" Carta di Londra" e il Patrimonio Architettonico: riflessioni circa una possibile implementazione. SCIRES-IT-SCIentific RESearch and Information Technology, 3(2), 55-68. http://dx.doi.org/10.2423/i22394303v3n2p55
Brusaporci, S., Maiezza, P., & Tata, A. (2018). A framework for architectural heritage HBIM semantization and development. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 179-184. https://doi.org/10.5194/isprs-archives-XLII-2-179-2018
Buragohain, D., Meng, Y., Deng, C., Li, Q., & Chaudhary, S. (2024). Digitalizing cultural heritage through metaverse applications: challenges, opportunities, and strategies. Heritage Science, 12(1). https://doi.org/10.1186/s40494-024-01403-1
Calcerano, F., Thravalou, S., Martinelli, L., Alexandrou, K., Artopoulos, G., & Gigliarelli, E. (2024). Energy and environmental improvement of built heritage: HBIM simulation-based approach applied to nine Mediterranean case-studies. Building Research & Information, 52(1–2), 225–247. https://doi.org/10.1080/09613218.2023.2204417
Castellano-Román, M., & Pinto-Puerto, F. (2019). Dimensions and Levels of Knowledge in Heritage Building Information Modelling, HBIM: The model of the Charterhouse of Jerez (Cádiz, Spain). Digital Applications in Archaeology and Cultural Heritage, 14, e00110. https://doi.org/10.1016/j.daach.2019.e00110
Charter, L. (2009). The London Charter for the computer-based visualisation of cultural heritage. Retrieved October 6, 2024, from www.londoncharter.org
Chen, H. (2024). Comparative Analysis of Storytelling in Virtual Reality Games vs. Traditional Games. Journal of Education Humanities and Social Sciences, 30, 163–172.https://doi.org/10.54097/g1q95e20
Chow, L., Graham, K., Grunt, T., Gallant, M., Rafeiro, J., & Fai, S. (2019). The evolution of modelling practices on canada’s parliament hill: an analysis of three significant heritage building information models (HBIM). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 419-426. https://doi.org/10.5194/isprs-archives-XLII-2-W11-419-2019
Coburn, J. Q., Freeman, I., & Salmon, J. L. (2017). A review of the capabilities of current low-cost virtual reality technology and its potential to enhance the design process. Journal of computing and Information Science in Engineering, 17(3), 031013. https://doi.org/10.1115/1.4036921
Cocchiarella, L. (2016). BIM: dimensions of space, thought, and education. Disegnarecon, 9(16), 3-1.
Conde, D., Balado, J., Soilán, M., Martínez, J., & Arias, P. (2023). LiDAR Data Processing for Digitization of the Castro of Santa Trega and Integration in Unreal Engine 5. International Journal of Architectural Heritage, 1-21. https://doi.org/10.1080/15583058.2023.2271877
Conti, A., Fiorini, L., Massaro, R., Santoni, C., & Tucci, G. (2020). HBIM for the preservation of a historic infrastructure: The Carlo III bridge of the Carolino Aqueduct. Applied Geomatics, 1-11. https://doi.org/10.1007/s12518-020-00335-2
Croce, V., Caroti, G., Piemonte, A., De Luca, L., & Véron, P. (2023). H-BIM and artificial intelligence: classification of architectural heritage for semi-automatic scan-to-BIM reconstruction. Sensors, 23(5), 2497. https://doi.org/10.3390/s23052497
Cruz, Y., Cabaleiro, M., Conde, B., Barros, B., & Riveiro, B. (2024). Methodology for the Integration of Structural Health Assessment of Masonry Bridges into HBIM. International Journal of Architectural Heritage, 1-23. https://doi.org/10.1080/15583058.2024.2342950
Di Biccari, C., Calcerano, F., D'Uffizi, F., Esposito, A., Campari, M., & Gigliarelli, E. (2022). Building information modeling and building performance simulation interoperability: State-of-the-art and trends in current literature. Advanced Engineering Informatics, 54, 101753. https://doi.org/10.1016/j.aei.2022.101753
Diara, F., & Rinaudo, F. (2020). Building archaeology documentation and analysis through open source HBIM solutions via NURBS modelling. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 1381-1388. https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1381-2020
Dore, C., Murphy, M., McCarthy, S., Brechin, F., Casidy, C., & Dirix, E. (2015). Structural simulations and conservation analysis-historic building information model (HBIM). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 351-357. https://doi.org/10.5194/isprsarchives-XL-5-W4-351-2015
El Barhoumi, N., & Hajji, R. (2024). HBIM and Extended Reality for Cultural Mediation of Historical Heritage: A Review. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 125-132. https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-125-2024
Epic Games Twinmotion Public Roadmap (2024). Retrieved October 6, 2024, from https://portal.productboard.com/epicgames/3-twinmotion-public-roadmap/tabs/4-under-consideration
European Commission (2024). Virtual Museum Transnational Network. Retrieved October 6, 2024, from https://cordis.europa.eu/project/id/270404
Fai, S., & Sydor, M. (2013, October). Building Information Modelling and the documentation of architectural heritage: Between the ‘typical’and the ‘specific’. In 2013 Digital Heritage International Congress (DigitalHeritage) (Vol. 1, pp. 731-734). IEEE. https://doi.org/10.1109/DigitalHeritage.2013.6743828
Fitria, T. N. (2023). Augmented reality (AR) and virtual reality (VR) technology in education: Media of teaching and learning: A review. International Journal of Computer and Information System (IJCIS), 4(1), 14-25. https://doi.org/10.29040/ijcis.v4i1.102
Franchini L., (1995). L'Ospedale maggiore di Milano dedicato all'Annunziata, detto Ca'Granda. Ospedali lombardi del Quattrocento: fondazioney trasformazioni, restauri, ed. by L. Franchini, Como, (pp.137-178).
Georgopoulos, A., & Stathopoulou, E. K. (2017). Data Acquisition for 3D Geometric Recording: State of the Art and Recent Innovations. In M. Vincent, V. López-Menchero Bendicho, M. Ioannides, T. Levy (Eds.), Heritage and Archaeology in the Digital Age. Quantitative Methods in the Humanities and Social Sciences. Cham: Springer. https://doi.org/10.1007/978-3-319-65370-9_1
Giordano, A. (2019). New Interoperable Tools to Communicate Knowledge of Historic Cities and Their Preservation and Innovation. In: Luigini, A. (Eds), Proceedings of the 1st International and Interdisciplinary Conference on Digital Environments for Education, Arts and Heritage. EARTH 2018. Advances in Intelligent Systems and Computing, vol 919. Springer, Cham. https://doi.org/10.1007/978-3-030-12240-9_5
Giordano, A., Russo, M., & Spallone, R. (Eds.). (2023). Beyond Digital Representation: Advanced Experiences in AR and AI for Cultural Heritage and Innovative Design. Springer Nature.
Gladstone, B. M., & Stasiulis, E. (2017). Digital storytelling method. Handbook of research methods in health social sciences, 1.
Gómez, A., Adineh, A., Rahrig, M., & Lerma, J. L. (2024). Narrating Serranos Bridge Evolution in Valencia (1500–2022) Using Historic Building Information Modelling and Historical Data. Remote Sensing, 16(2), 310. https://doi.org/10.3390/rs16020310
Grassi, L. (1958). La Ca'Granda: storia e restauro.
Grassi, L. (1972). Lo'Spedale di poveri'del Filarete: storia e restauro. Università degli Studi di Milano.
Grussenmeyer, P., Alby, E., Assali, P., Poitevin, V., Hullo, J. F., & Smigiel, E. (2011, June). Accurate documentation in cultural heritage by merging TLS and high-resolution photogrammetric data. In Videometrics, range imaging, and applications XI, 8085, (pp.79-91). SPIE.
Heesom, D., Boden, P., Hatfield, A., Rooble, S., Andrews, K., & Berwari, H. (2021). Developing a collaborative HBIM to integrate tangible and intangible cultural heritage. International Journal of Building Pathology and Adaptation, 39(1), 72-95.
HTC Vive (2019). Mona Lisa: Beyond the Glass at The Louvre I HTC VIVE ARTS. Retrieved October 6, 2024, from https://www.youtube.com/watch?v=Au_UpzhzHwk
Hu-Au, E., & Lee, J. J. (2017). Virtual reality in education: a tool for learning in the experience age. International Journal of Innovation in Education, 4(4), 215-226. https://doi.org/10.1504/IJIIE.2017.091481
Huggett, J. (2020). Virtually real or really virtual: Towards a heritage metaverse. Studies in digital heritage, 4(1), 1-15. https://doi.org/10.14434/sdh.v4i1.26218
ICOM International Council of Museums (2022). Museum Definition. Retrieved October 6, 2024, from https://icom.museum/en/resources/standards-guidelines/museum-definition/
Innocente, C., Ulrich, L., Moos, S., & Vezzetti, E. (2023). A framework study on the use of immersive XR technologies in the cultural heritage domain. Journal of Cultural Heritage, 62, 268-283. https://doi.org/10.1016/j.culher.2023.06.001
Istat – Istituto Nazionale di Statistica (2022). Musei e istituzioni similari. Musei aperti ma visitatori in forte calo nell’anno della pandem.Retrieved October 6, 2024, from https://www.istat.it/comunicato-stampa/musei-e-istituzioni-similari-in-italia-anno-2020/
Jordan-Palomar, I., Tzortzopoulos, P., García-Valldecabres, J., & Pellicer, E. (2018). Protocol to manage heritage-building interventions using heritage building information modelling (HBIM). Sustainability, 10(4), 908. https://doi.org/10.3390/su10040908
Jungherr, A., & Schlarb, D. B. (2022). The extended reach of game engine companies: How companies like epic games and Unity technologies provide platforms for extended reality applications and the metaverse. Social Media+ Society, 8(2). https://doi.org/10.1177/20563051221107641
Lee, J., Kim, J., & Choi, J. Y. (2019). The adoption of virtual reality devices: The technology acceptance model integrating enjoyment, social interaction, and strength of the social ties. Telematics and Informatics, 39, 37-48. https://doi.org/10.1016/j.tele.2018.12.006
Lerma, J. L., Navarro, S., Cabrelles, M., & Villaverde, V. (2010). Terrestrial laser scanning and close range photogrammetry for 3D archaeological documentation: the Upper Palaeolithic Cave of Parpalló as a case study. Journal of Archaeological Science, 37(3), 499-507. https://doi.org/10.1016/j.jas.2009.10.011
Li, Y., Ch’ng, E., & Cobb, S. (2023). Factors influencing engagement in hybrid virtual and augmented reality. ACM Transactions on Computer-Human Interaction, 30(4), 1-27. https://doi.org/10.1145/3589952
Liu, J., Azhar, S., Willkens, D., & Li, B. (2023, April). Static terrestrial laser scanning (TLS) for heritage building information modeling (HBIM): a systematic review. Virtual Worlds, 2,(2), 90-114.
Liu, J., Sun, G., & Shidujaman, M. (2024, June). Integrating Virtual and Real: A Holistic Framework for Mixed Reality Interactive Design in Museum Exhibitions. In International Conference on Human-Computer Interaction (pp. 367-387). Cham: Springer Nature Switzerland. https://doi.org/10.3390/virtualworlds2020006
Lo Presti, N., Castellazzi, G., D’Altri, A. M., Bertani, G., de Miranda, S., Azenha, M., ... & Mazzotti, C. (2024). Streamlining FE and BIM Modeling for Historic Buildings with Point Cloud Transformation. International Journal of Architectural Heritage, 1-14. https://doi.org/10.1080/15583058.2024.2330942
Lo Turco, M., & Tomalini, A. (2021). Esperienze di Machine Learning per l’arricchimento informativo di modelli HBIM: il progetto DECAI-Machine Learning Experiences for Information Enrichment of HBIM Models: the DECAI Project. DN, 9, (pp.47-59). 2610-8755
Lopez-Menchero, V. M., & Grande, A. (2011). The principles of the Seville Charter. In CIPA symposium proceedings, 2011, (pp. 2-6).
Loup, G., George, S., Marfisi, I., & Serna, A. (2018). A visual programming tool to design mixed and virtual reality interactions. International Journal of Virtual Reality, 18(2), 19-29. https://doi.org/10.20870/IJVR.2018.18.2.2904
Lovell, L. J., Davies, R. J., & Hunt, D. V. (2023). The application of historic building information modelling (HBIM) to cultural heritage: a review. Heritage, 6(10), 6691-6717. https://doi.org/10.3390/heritage6100350
Lumini, A. (2023). L'HBIM per la fruizione virtuale interattiva del Patrimonio Architettonico e dei metadati informativi. Il caso studio della Scuola di Guerra Aerea di Firenze.
Maiezza, P., & Tata, A. (2021). Standard for geometric and informative reliabilities in HBIM models. Disegnarecon, 14(26), 15. https://doi.org/10.20365/disegnarecon.26.2021.15
Marie-Claire Eylott (2017). Museum to star in Sky VR experience with Sir David Attenborough. Retrieved October 6, 2024, from https://www.nhm.ac.uk/discover/news/2017/april/museum-to-star-in-sky-vr-experience-with-sir-david-attenborough.html
Martinelli, L., Calcerano, F., & Gigliarelli, E. (2022). Methodology for an HBIM workflow focused on the representation of construction systems of built heritage. Journal of Cultural Heritage, 55, 277-289. https://doi.org/10.1016/j.culher.2022.03.016
Moyano, J., Musicco, A., Nieto-Julián, J. E., & Domínguez-Morales, J. P. (2024). Geometric characterization and segmentation of historic buildings using classification algorithms and convolutional networks in HBIM. Automation in Construction, 167, 105728. https://doi.org/10.1016/j.autcon.2024.105728
Murphy, M., McGovern, E., & Pavia, S. (2009). Historic building information modelling (HBIM). Structural Survey, 27(4), 311-327. https://doi.org/10.1108/02630800910985108
Nabiev, A. S., Nurkusheva, L. T., Suleimenova, K. K., Sadvokasova, G. K., & Imanbaeva, Z. A. (2019). Virtual reconstruction of historical architectural monuments: methods and technologies. International Journal of Innovative Technology and Exploring Engineering, 8(10). 10.35940/ijitee.J9901.0881019
Nagy, G., & Ashraf, F. (2021). HBIM platform & smart sensing as a tool for monitoring and visualizing energy performance of heritage buildings. Developments in the Built Environment, 8, 100056. https://doi.org/10.1016/j.dibe.2021.100056
Newzoo (2024). Global game market report 2024. Retrieved October 6, 2024 https://newzoo.com/resources/trend-reports/newzoos-global-games-market-report-2024-free-version
Nieto-Julián, J. E., Farratell, J., Bouzas Cavada, M., & Moyano, J. (2023). Collaborative workflow in an HBIM project for the restoration and conservation of cultural heritage. International Journal of Architectural Heritage, 17(11), 1813-1832. https://doi.org/10.1080/15583058.2022.2073294
Noghabaei, M., Heydarian, A., Balali, V., & Han, K. (2020). Trend analysis on adoption of virtual and augmented reality in the architecture, engineering, and construction industry. Data, 5(1), 26. https://doi.org/10.3390/data5010026
Oreni, D. (2023). Detect the differences: Cultural Heritage survey, documentation and interpretation for conservation activities. Disegnarecon, 16(31), 19-1. https://doi.org/10.20365/disegnarecon.31.2023.19
Oreni, D., & Fant, R. (2019). E per lo Signore mi fu comandato ch'io dovessi fare uno disegno a proporzione di questo sito, il quale era per un verso quattrocento braccia e pell'altro cento sessanta. In Riflessioni. L'arte del disegno/il disegno dell'arte (pp. 855-862). Gangemi Editore.
Oreni, D., Brumana, R., Della Torre, S., Banfi, F., Barazzetti, L., & Previtali, M. (2014). Survey turned into HBIM: the restoration and the work involved concerning the Basilica di Collemaggio after the earthquake (L'Aquila). ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, 2(5), 267-273. https://doi.org/10.5194/isprsannals-II-5-267-2014
Oreni, D., Karimi, G., & Barazzetti, L. (2017). Applying bim to built heritage with complex shapes: The ice house of filarete's ospedale maggiore in milan, Italy. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2W5), 553-560. https://doi.org/10.5194/isprs-archives-XLII-2-W5-553-2017
Osello, A. (2012). Il futuro del disegno con il BIM per ingegneri e architetti, The future of Drawing with BIM for Engineers and Architects. Palermo, Italy: D. Flaccovio.
Osservatorio Innovazione Digitale per la Cultura (2023). Osservatori.net Digital Innovation Politecnico di Milano. L’innovazione digitale nei msuei italiani nel 2023.Retrieved October 6, 2024, from https://www.ipresslive.it/it/ipress/comunicati/view/59011/
Pan, Z., Cheok, A. D., Yang, H., Zhu, J., & Shi, J. (2006). Virtual reality and mixed reality for virtual learning environments. Computers & graphics, 30(1), 20-28. https://doi.org/10.1016/j.cag.2005.10.004
Park, J., Kim, J., Lee, D., Jeong, K., Lee, J., Kim, H., & Hong, T. (2022). Deep learning–based automation of scan-to-BIM with modeling objects from occluded point clouds. Journal of Management in Engineering, 38(4), 04022025. https://doi.org/10.1061/(ASCE)ME.1943-5479.0001055
Pavan, A., Mirarchi, C., & Giani, M. (2017). BIM: metodi e strumenti. Progettare, costruire e gestire nell'era digitale. Tecniche
Pecchiai, P. (1927). L'Ospedale maggiore di Milano nella storia e nell'arte: con notizie documentate su le origini e su lo sviluppo della organizzazione spedaliera milanese dall'evo medio ai tempi nostri e con altri varii studi ed appunti di storia milanese e lombarda. Arti grafiche Pizzi & Pizio.
Pepe, M., Costantino, D., & Restuccia Garofalo, A. (2020). An efficient pipeline to obtain 3D model for HBIM and structural analysis purposes from 3D point clouds. Applied Sciences, 10(4), 1235. https://doi.org/10.3390/app10041235
Perez, Y., Golparvar-Fard, M., & El-Rayes, K. (2021). Scan2BIM-NET: Deep learning method for segmentation of point clouds for scan-to-BIM. Journal of Construction Engineering and Management, 147(9), 04021107. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002132
Poux, F., Valembois, Q., Mattes, C., Kobbelt, L., & Billen, R. (2020). Initial user-centered design of a virtual reality heritage system: Applications for digital tourism. Remote Sensing, 12(16), 2583. https://doi.org/10.3390/rs12162583
Pv, S. (2021). Beginning Unreal Engine 4 Blueprints Visual Scripting. Berkeley, CA: Apress.
Quattrini, R., Malinverni, E. S., Clini, P., Nespeca, R., & Orlietti, E. (2015). From TLS to HBIM. High quality semantically-aware 3D modeling of complex architecture. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 367-374. https://doi.org/10.5194/isprsarchives-XL-5-W4-367-2015
Quintero, M. S., Blake, B., & Eppich, R. (2007). Conservation of architectural heritage: The role of digital documentation tools: The need for appropriate teaching material. International journal of architectural computing, 5(2), 239-253. https://doi.org/10.1260/1478-0771.5.2.240
Ramos Sánchez, J. A., Cruz Franco, P. A., & Rueda Márquez de la Plata, A. (2022). Achieving Universal Accessibility through Remote Virtualization and Digitization of Complex Archaeological Features: A Graphic and Constructive Study of the Columbarios of Merida. Remote Sensing, 14(14), 3319. https://doi.org/10.3390/rs14143319
Remondino, F., & Rizzi, A. (2010). Reality-based 3D documentation of natural and cultural heritage sites—techniques, problems, and examples. Applied Geomatics, 2, 85-100. https://doi.org/10.1007/s12518-010-0025-x
Rocha, G., & Mateus, L. (2021). A survey of scan-to-BIM practices in the AEC industry—a quantitative analysis. ISPRS International Journal of Geo-Information, 10(8), 564. https://doi.org/10.3390/ijgi10080564
Rocha, G., Mateus, L., Fernández, J., & Ferreira, V. (2020). A scan-to-BIM methodology applied to heritage buildings. Heritage, 3(1), 47-67. https://doi.org/10.3390/heritage3010004
Rodriguez-Garcia, B., Guillen-Sanz, H., Checa, D., & Bustillo, A. (2024). A systematic review of virtual 3D reconstructions of Cultural Heritage in immersive Virtual Reality. Multimedia Tools and Applications, 1-51. https://doi.org/10.1007/s11042-024-18700-3
Rolin, R., Antaluca, E., Batoz, J. L., Lamarque, F., & Lejeune, M. (2019). From point cloud data to structural analysis through a geometrical hBIM-oriented model. Journal on Computing and Cultural Heritage (JOCCH), 12(2), 1-26. https://doi.org/10.1145/3242901
Romero, M., & Sewell, B. (2019). Blueprints visual scripting for Unreal engine: The faster way to build games using UE4 blueprints. Packt Publishing Ltd.
Rossi, M., & Armellino, L. (2023). The Rethoric of Space Representation: From Drawing Heritage to Visual Computing. Img journal, (8), 202-225. https://doi.org/10.6092/issn.2724-2463/16260
Rubio-Tamayo, J. L., Gertrudix Barrio, M., & García García, F. (2017). Immersive environments and virtual reality: Systematic review and advances in communication, interaction and simulation. Multimodal technologies and interaction, 1(4), 21. https://doi.org/10.3390/mti1040021
Safikhani, S., Keller, S., Schweiger, G., & Pirker, J. (2022). Immersive virtual reality for extending the potential of building information modeling in architecture, engineering, and construction sector: systematic review. International Journal of Digital Earth, 15(1), 503-526. https://doi.org/10.1080/17538947.2022.2038291
Salerno, R. (2019). Digital technologies for “minor” cultural landscapes knowledge: Sharing values in heritage and tourism perspective. In Geospatial intelligence: Concepts, methodologies, tools, and applications (pp. 1645-1670). IGI Global.
Schweibenz, W. (2019). The virtual museum: an overview of its origins, concepts, and terminology. The Museum Review, 4(1), 1-29. http://creativecommons.org/licenses/by-nc-nd/2.0/de/
Scianna, A., Gaglio, G. F., & La Guardia, M. (2020). HBIM data management in historical and archaeological buildings. Archeologia e Calcolatori, (1). https://doi.org/10.19282/ac.31.1.2020.11
Sdegno, A. (2016). Tra CAAD e BIM/Between CAD and BIM. Nuove.
Sidani, A., Dinis, F. M., Sanhudo, L., Duarte, J., Santos Baptista, J., Pocas Martins, J., & Soeiro, A. (2021). Recent tools and techniques of BIM-based virtual reality: A systematic review. Archives of Computational Methods in Engineering, 28(2), 449-462. https://doi.org/10.1007/s11831-019-09386-0
Soto-Martin, O., Fuentes-Porto, A., & Martin-Gutierrez, J. (2020). A digital reconstruction of a historical building and virtual reintegration of mural paintings to create an interactive and immersive experience in virtual reality. Applied Sciences, 10(2), 597. https://doi.org/10.3390/app10020597
Tang, S., Shelden, D. R., Eastman, C. M., Pishdad-Bozorgi, P., & Gao, X. (2019). A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. Automation in construction, 101, 127-139. https://doi.org/10.1016/j.autcon.2019.01.020
Taormina, F., & Baraldi, S. B. (2023). Museums and digital technology: a literature review on organizational issues. Rethinking Culture and Creativity in the Digital Transformation, (pp. 69-87).
Tate Modern (2017). Behind The Scenes. Modigliani VR. The Ochre Atelier. Retrieved October 6, 2024, from https://www.tate.org.uk/whats-on/tate-modern/modigliani/modigliani-vr-ochre-atelier
Taylor, J., & Gibson, L. K. (2017). Digitisation, digital interaction and social media: embedded barriers to democratic heritage. International Journal of Heritage Studies, 23(5), 408-420. https://doi.org/10.1080/13527258.2016.1171245
Theodoropoulos, A., & Antoniou, A. (2022). VR games in cultural heritage: A systematic review of the emerging fields of virtual reality and culture games. Applied Sciences, 12(17), 8476. https://doi.org/10.3390/app12178476
Trizio, I., & Savini, F. (2020, October). Archaeology of buildings and HBIM methodology: Integrated tools for documentation and knowledge management of architectural heritage. In Proceedings of the IMEKO International Conference on Metrology for Archaeology and Cultural Heritage, MetroArchaeo (pp. 84-89).
Trizio, I., Savini, F., Giannangeli, A., Boccabella, R., & Petrucci, G. (2019). The archaeological analysis of masonry for the restoration project in HBIM. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, (pp.715-722). https://doi.org/10.5194/isprs-archives-XLII-2-W9-715-2019
Ursini, A., Grazzini, A., Matrone, F., & Zerbinatti, M. (2022). From scan-to-BIM to a structural finite elements model of built heritage for dynamic simulation. Automation in Construction, 142, 104518. https://doi.org/10.1016/j.autcon.2022.104518
Vaglienti, F.(2014). La Ca’Granda dei Milanesi: itinerario interdisciplinare nel fulcro di una metropoli multiculturale.
Vohera, C., Chheda, H., Chouhan, D., Desai, A., & Jain, V. (2021, July). Game engine architecture and comparative study of different game engines. In 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-6). IEEE. https://doi.org/10.1109/ICCCNT51525.2021.9579618
VUUM Virtual Unimi Museum (2023). I quattrocenteschi cortili della Ca' Granda — Google Arts & Culture. Retrieved October 6, 2024, from https://museovirtuale.unimi.it/googlearts
Wen, J., & Gheisari, M. (2020). Using virtual International journal of environmental research and public health, 15reality to facilitate communication in the AEC domain: a systematic review. Construction Innovation, 20(3), 509-542. https://doi.org/10.1108/CI-11-2019-0122
Wu, S., Hou, L., & Zhang, G. (2021). Integrated application of BIM and eXtended reality technology: a review, classification and outlook. In Proceedings of the 18th International Conference on Computing in Civil and Building Engineering: ICCCBE 2020 (pp. 1227-1236). Springer International Publishing. https://doi.org/10.1007/978-3-030-51295-8_86
Xing, Y., Xiao, Y., & Luo, Y. (2024). Integrating restoration and interactive exploration to enhance cultural heritage through VR storytelling. Scientific Reports, 14(1), 21194. https://doi.org/10.1038/s41598-024-72182-9
Yang, L. I., Huang, J., Feng, T. I. A. N., Hong-An, W. A. N. G., & Guo-Zhong, D. A. I. (2019). Gesture interaction in virtual reality. Virtual Reality & Intelligent Hardware, 1(1), 84-112. https://doi.org/10.3724/SP.J.2096-5796.2018.0006
Zhang, Y., Liu, H., Kang, S. C., & Al-Hussein, M. (2020). Virtual reality applications for the built environment: Research trends and opportunities. Automation in Construction, 118, 103311. https://doi.org/10.1016/j.autcon.2020.103311
Zuanni, C. (2021). Theorizing Born Digital Objects: Museums and Contemporary Materialities. Museum & Society, 19(2), 184-198). https://doi.org/10.29311/mas.v19i2.3790